A Spiking Neural Network for Visual Color Feature Classification for Pictures with RGB-HSV Model

Hui Liang, Jianxing Wu, Ran Wang, F. Liang, Li Sun, Guohe Zhang
{"title":"A Spiking Neural Network for Visual Color Feature Classification for Pictures with RGB-HSV Model","authors":"Hui Liang, Jianxing Wu, Ran Wang, F. Liang, Li Sun, Guohe Zhang","doi":"10.1109/ICIASE45644.2019.9074049","DOIUrl":null,"url":null,"abstract":"Spiking neural networks (SNNs) are artificial neural network models that are closely mimic natural neural networks. LIF (Leaky Integrate-and-fire) neuron model, population coding and Tempotron supervised learning rules are used to construct a spiking neural network for visual color feature classification based on RGB-HSV (Red, Green, Blue -Hue, Saturation, Value) model. The product of a momentum learning rate and the last weight change is proposed to speed up the training of the SNN. Test results based on a common data set show that the accuracy of the SNN can be up to 90%.","PeriodicalId":206741,"journal":{"name":"2019 IEEE International Conference of Intelligent Applied Systems on Engineering (ICIASE)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference of Intelligent Applied Systems on Engineering (ICIASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIASE45644.2019.9074049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spiking neural networks (SNNs) are artificial neural network models that are closely mimic natural neural networks. LIF (Leaky Integrate-and-fire) neuron model, population coding and Tempotron supervised learning rules are used to construct a spiking neural network for visual color feature classification based on RGB-HSV (Red, Green, Blue -Hue, Saturation, Value) model. The product of a momentum learning rate and the last weight change is proposed to speed up the training of the SNN. Test results based on a common data set show that the accuracy of the SNN can be up to 90%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于RGB-HSV模型的脉冲神经网络图像视觉颜色特征分类
脉冲神经网络是一种近似于自然神经网络的人工神经网络模型。在RGB-HSV (Red, Green, Blue -Hue, Saturation, Value)模型的基础上,利用LIF (Leaky Integrate-and-fire)神经元模型、种群编码和Tempotron监督学习规则构建了用于视觉颜色特征分类的峰值神经网络。为了加快SNN的训练速度,提出了动量学习率与最后一次权值变化的乘积。基于通用数据集的测试结果表明,该SNN的准确率可达90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Energy Harvesting Path Planning Strategy on the Quality of Information for Wireless Sensor Networks PHGWO: A Duty Cycle Design Method for High-density Wireless Sensor Networks Obstacle Avoidance Path Planning Based on Target Heuristic and Repair Genetic Algorithms Research on Thermal Error of CNC Machine Tool Based on DBSCAN Clustering and BP Neural Network Algorithm Implementation of Remote Control a Mower Robot
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1