{"title":"Black Powder in Sales Gas Pipelines: Sources and Technical Recommendations","authors":"Faisal Al Wahedi, M. Saleh, Z. Dadach","doi":"10.4236/wjet.2020.81007","DOIUrl":null,"url":null,"abstract":"One of the most severe problems affecting the efficient operations of gas pipelines is corrosion caused by black powder. According to the literature, the primary source for the existence of black powder is condensed water. In this case study, the temperature (40°C) of the sales gas is much higher than its dew point (9.24°C). The water is therefore in vapor phase. It is then proposed to remove water vapor from the gas at the entrance of the plant using an adsorption process. The recommended technology is the Layered Bed Temperature-Swing Adsorption (LBTSA) with micro-channels with molecular sieve zeolite 4A and activated alumina as adsorbents. In the case of presence of aerosols that could condense water, it is suggested to utilize a RED (Rare Earth Drum) magnetic separator in order to remove black powder from the gaseous feed.","PeriodicalId":344331,"journal":{"name":"World Journal of Engineering and Technology","volume":"265 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/wjet.2020.81007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
One of the most severe problems affecting the efficient operations of gas pipelines is corrosion caused by black powder. According to the literature, the primary source for the existence of black powder is condensed water. In this case study, the temperature (40°C) of the sales gas is much higher than its dew point (9.24°C). The water is therefore in vapor phase. It is then proposed to remove water vapor from the gas at the entrance of the plant using an adsorption process. The recommended technology is the Layered Bed Temperature-Swing Adsorption (LBTSA) with micro-channels with molecular sieve zeolite 4A and activated alumina as adsorbents. In the case of presence of aerosols that could condense water, it is suggested to utilize a RED (Rare Earth Drum) magnetic separator in order to remove black powder from the gaseous feed.