Extremely Low Resource Text simplification with Pre-trained Transformer Language Model

T. Maruyama, Kazuhide Yamamoto
{"title":"Extremely Low Resource Text simplification with Pre-trained Transformer Language Model","authors":"T. Maruyama, Kazuhide Yamamoto","doi":"10.1109/IALP48816.2019.9037650","DOIUrl":null,"url":null,"abstract":"Recent text simplification approaches regard the task as a monolingual text-to-text generation inspired by machine translation. In particular, the transformer-based translation model outperform previous methods. Although machine translation approaches need a large-scale parallel corpus, parallel corpora for text simplification are very small compared to machine translation tasks. Therefore, we attempt a simple approach which fine-tunes the pre-trained language model for text simplification with a small parallel corpus. Specifically, we conduct experiments with the following two models: transformer-based encoder-decoder model and a language model that receives a joint input of original and simplified sentences, called TransformerLM. Thus, we show that TransformerLM, which is a simple text generation model, substantially outperforms a strong baseline. In addition, we show that fine-tuned TransformerLM with only 3,000 supervised examples can achieve performance comparable to a strong baseline trained by all supervised data.","PeriodicalId":208066,"journal":{"name":"2019 International Conference on Asian Language Processing (IALP)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP48816.2019.9037650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Recent text simplification approaches regard the task as a monolingual text-to-text generation inspired by machine translation. In particular, the transformer-based translation model outperform previous methods. Although machine translation approaches need a large-scale parallel corpus, parallel corpora for text simplification are very small compared to machine translation tasks. Therefore, we attempt a simple approach which fine-tunes the pre-trained language model for text simplification with a small parallel corpus. Specifically, we conduct experiments with the following two models: transformer-based encoder-decoder model and a language model that receives a joint input of original and simplified sentences, called TransformerLM. Thus, we show that TransformerLM, which is a simple text generation model, substantially outperforms a strong baseline. In addition, we show that fine-tuned TransformerLM with only 3,000 supervised examples can achieve performance comparable to a strong baseline trained by all supervised data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
极低的资源文本简化与预训练的转换语言模型
最近的文本简化方法将任务视为受机器翻译启发的单语文本到文本生成。特别是,基于变压器的翻译模型优于以前的方法。虽然机器翻译方法需要大规模的并行语料库,但与机器翻译任务相比,用于文本简化的并行语料库非常小。因此,我们尝试了一种简单的方法,该方法对预训练的语言模型进行微调,以使用小型并行语料库进行文本简化。具体来说,我们用以下两个模型进行了实验:基于转换器的编码器-解码器模型和接收原始和简化句子联合输入的语言模型,称为TransformerLM。因此,我们展示了TransformerLM,它是一个简单的文本生成模型,在本质上优于一个强大的基线。此外,我们还表明,仅使用3,000个监督示例进行微调的TransformerLM可以达到与所有监督数据训练的强基线相当的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A General Procedure for Improving Language Models in Low-Resource Speech Recognition Automated Prediction of Item Difficulty in Reading Comprehension Using Long Short-Term Memory An Measurement Method of Ancient Poetry Difficulty for Adaptive Testing How to Answer Comparison Questions An Enhancement of Malay Social Media Text Normalization for Lexicon-Based Sentiment Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1