Easy and efficient spike-based Machine Learning with mlGeNN

James C. Knight, T. Nowotny
{"title":"Easy and efficient spike-based Machine Learning with mlGeNN","authors":"James C. Knight, T. Nowotny","doi":"10.1145/3584954.3585001","DOIUrl":null,"url":null,"abstract":"Intuitive and easy to use application programming interfaces such as Keras have played a large part in the rapid acceleration of machine learning with artificial neural networks. Building on our recent works translating ANNs to SNNs and directly training classifiers with e-prop, we here present the mlGeNN interface as an easy way to define, train and test spiking neural networks on our efficient GPU based GeNN framework. We illustrate the use of mlGeNN by investigating the performance of a number of one and two layer recurrent spiking neural networks trained to recognise hand gestures from the DVS gesture dataset with the e-prop learning rule. We find that not only is mlGeNN vastly more convenient to use than the lower level PyGeNN interface, the new freedom to effortlessly and rapidly prototype different network architectures also gave us an unprecedented overview over how e-prop compares to other recently published results on the DVS gesture dataset across architectural details.","PeriodicalId":375527,"journal":{"name":"Proceedings of the 2023 Annual Neuro-Inspired Computational Elements Conference","volume":"290 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 Annual Neuro-Inspired Computational Elements Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3584954.3585001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Intuitive and easy to use application programming interfaces such as Keras have played a large part in the rapid acceleration of machine learning with artificial neural networks. Building on our recent works translating ANNs to SNNs and directly training classifiers with e-prop, we here present the mlGeNN interface as an easy way to define, train and test spiking neural networks on our efficient GPU based GeNN framework. We illustrate the use of mlGeNN by investigating the performance of a number of one and two layer recurrent spiking neural networks trained to recognise hand gestures from the DVS gesture dataset with the e-prop learning rule. We find that not only is mlGeNN vastly more convenient to use than the lower level PyGeNN interface, the new freedom to effortlessly and rapidly prototype different network architectures also gave us an unprecedented overview over how e-prop compares to other recently published results on the DVS gesture dataset across architectural details.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
简单高效的基于峰值的mlGeNN机器学习
直观和易于使用的应用程序编程接口,如Keras,在使用人工神经网络的机器学习的快速加速中发挥了重要作用。基于我们最近的工作,将人工神经网络转换为snn,并直接使用e-prop训练分类器,我们在这里提出了mlGeNN接口,作为一种在我们高效的基于GPU的GeNN框架上定义、训练和测试峰值神经网络的简单方法。我们通过研究一些一层和两层循环峰值神经网络的性能来说明mlGeNN的使用,这些神经网络经过训练,可以用e-prop学习规则识别DVS手势数据集中的手势。我们发现mlGeNN不仅比底层的PyGeNN接口更方便使用,而且可以轻松快速地对不同的网络架构进行原型化,这也让我们对e-prop与其他最近发布的分布式交换机手势数据集的结果在架构细节上的比较有了前所未有的概述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sigma-Delta Networks for Robot Arm Control Easy and efficient spike-based Machine Learning with mlGeNN SupportHDC: Hyperdimensional Computing with Scalable Hypervector Sparsity Exploring Information-Theoretic Criteria to Accelerate the Tuning of Neuromorphic Level-Crossing ADCs Demonstration of neuromorphic sequence learning on a memristive array
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1