Study on the Characteristics of Multiway Valve with Compensator with Variable Pressure Difference

X. Chen, Bang Li
{"title":"Study on the Characteristics of Multiway Valve with Compensator with Variable Pressure Difference","authors":"X. Chen, Bang Li","doi":"10.1109/WCMEIM56910.2022.10021414","DOIUrl":null,"url":null,"abstract":"The existing pre-valve pressure compensation flow control valve has the problems of low flow control accuracy, poor operating performance. In this regard, a load-sensitive flow valve with controllable pressure compensation ability is proposed, which improves the rapidity of large flow conditions and the energy saving and control accuracy of small flow conditions by ensuring that the pressure difference of the main valve is consistent with the change of pilot pressure. The working principle of variable pressure differential pressure compensation multi-way valve is clarified, and the simulation model of the multi-way valve is established on the AMESIM simulation platform for simulation analysis. The results show that when the compound movement requires a large flow, a wide range of no-flow saturation function can be achieved by increasing the pilot pressure, and the flow change curve is smooth in the whole process, and the whole machine runs without jitter, which has good controllability. When a small flow rate is required at low speeds, the pressure loss of the system is reduced by reducing the pressure drop, and the energy saving of the system is improved.","PeriodicalId":202270,"journal":{"name":"2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCMEIM56910.2022.10021414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The existing pre-valve pressure compensation flow control valve has the problems of low flow control accuracy, poor operating performance. In this regard, a load-sensitive flow valve with controllable pressure compensation ability is proposed, which improves the rapidity of large flow conditions and the energy saving and control accuracy of small flow conditions by ensuring that the pressure difference of the main valve is consistent with the change of pilot pressure. The working principle of variable pressure differential pressure compensation multi-way valve is clarified, and the simulation model of the multi-way valve is established on the AMESIM simulation platform for simulation analysis. The results show that when the compound movement requires a large flow, a wide range of no-flow saturation function can be achieved by increasing the pilot pressure, and the flow change curve is smooth in the whole process, and the whole machine runs without jitter, which has good controllability. When a small flow rate is required at low speeds, the pressure loss of the system is reduced by reducing the pressure drop, and the energy saving of the system is improved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可变压差补偿器多路阀特性研究
现有的阀前压力补偿流量控制阀存在流量控制精度低、操作性能差的问题。为此,提出了一种具有可控压力补偿能力的负载敏感流量阀,通过保证主阀压差与先导压力变化一致,提高了大流量工况的快速性和小流量工况的节能与控制精度。阐明了变压差压补偿多路阀的工作原理,并在AMESIM仿真平台上建立了多路阀的仿真模型进行仿真分析。结果表明,当复合运动需要大流量时,通过增加先导压力可实现大范围的无流量饱和功能,且整个过程流量变化曲线平稳,整机运行无抖动,具有良好的可控性。在低速下要求小流量时,通过减小压降降低了系统的压力损失,提高了系统的节能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Analysis of a Novel Soft Actuator with High Contraction Ratio Based on Nested Structure Design and Verification of Thermal Balance System for Electric Drive Transmission in Urban Public Transit Design and Experiment of a Novel Manipulator for Autonomous Harvesting Tomato Clusters Research on Young's Modulus Prediction Model of Particle Reinforced Composites The Liquid Rocket Engine Experiment Data Quality Improvement Based on 3σ-LMBP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1