Safe and secure software updates on high-performance embedded systems

Irune Agirre
{"title":"Safe and secure software updates on high-performance embedded systems","authors":"Irune Agirre","doi":"10.1109/DSN-W50199.2020.00021","DOIUrl":null,"url":null,"abstract":"The next generation of dependable embedded systems feature autonomy and higher levels of interconnection. Autonomy is commonly achieved with the support of artificial intelligence algorithms that pose high computing demands on the hardware platform, reaching a high performance scale. This involves a dramatic increase in software and hardware complexity, fact that together with the novelty of the technology, raises serious concerns regarding system dependability. Traditional approaches for certification require to demonstrate that the system will be acceptably safe to operate before it is deployed into service. The nature of autonomous systems, with potentially infinite scenarios, configurations and unanticipated interactions, makes it increasingly difficult to support such claim at design time. In this context, the extended networking technologies can be exploited to collect post-deployment evidence that serve to oversee whether safety assumptions are preserved during operation and to continuously improve the system through regular software updates. These software updates are not only convenient for critical bug fixing but also necessary for keeping the interconnected system resilient against security threats. However, such approach requires a recondition of the traditional certification practices.","PeriodicalId":427687,"journal":{"name":"2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSN-W50199.2020.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The next generation of dependable embedded systems feature autonomy and higher levels of interconnection. Autonomy is commonly achieved with the support of artificial intelligence algorithms that pose high computing demands on the hardware platform, reaching a high performance scale. This involves a dramatic increase in software and hardware complexity, fact that together with the novelty of the technology, raises serious concerns regarding system dependability. Traditional approaches for certification require to demonstrate that the system will be acceptably safe to operate before it is deployed into service. The nature of autonomous systems, with potentially infinite scenarios, configurations and unanticipated interactions, makes it increasingly difficult to support such claim at design time. In this context, the extended networking technologies can be exploited to collect post-deployment evidence that serve to oversee whether safety assumptions are preserved during operation and to continuously improve the system through regular software updates. These software updates are not only convenient for critical bug fixing but also necessary for keeping the interconnected system resilient against security threats. However, such approach requires a recondition of the traditional certification practices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
安全可靠的高性能嵌入式系统软件更新
下一代可靠的嵌入式系统具有自主性和更高层次的互联性。自治通常在人工智能算法的支持下实现,这对硬件平台提出了很高的计算要求,达到了高性能规模。这涉及到软件和硬件复杂性的急剧增加,事实上,加上技术的新颖性,引起了对系统可靠性的严重关注。传统的认证方法要求在系统投入使用之前证明系统将是可接受的安全操作。自主系统的本质,包括潜在的无限场景、配置和不可预期的交互,使得在设计时支持这种说法变得越来越困难。在这种情况下,扩展网络技术可以用于收集部署后的证据,用于监督操作期间是否保持安全假设,并通过定期软件更新不断改进系统。这些软件更新不仅便于修复关键错误,而且对于保持互联系统抵御安全威胁也是必要的。然而,这种方法需要对传统的认证实践进行改造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PyTorchFI: A Runtime Perturbation Tool for DNNs AI Safety Landscape From short-term specific system engineering to long-term artificial general intelligence DSN-W 2020 TOC Approaching certification of complex systems Exploring Fault Parameter Space Using Reinforcement Learning-based Fault Injection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1