{"title":"Real-time implementation of a novel safety function for prevention of loss of vehicle control","authors":"Mohammad Ali, C. Olsson, J. Sjöberg","doi":"10.1109/ITSC.2011.6083082","DOIUrl":null,"url":null,"abstract":"We present a novel safety function for prevention of vehicle control loss. The safety function overcomes some of the limitations of conventional Electronic Stability Control (ESC) systems. Based on sensor information about the host vehicle's state and the road ahead, a threat assessment algorithm predicts the future evolution of the vehicle's state. If the vehicle motion, predicted over a finite time horizon violates safety constraints, autonomous deceleration is activated in order to prevent vehicle loss of control. The safety function has been implemented in real-time. Experimental results indicate that the safety function relies less on the driver's skills than conventional ESC systems and that a more controllable and comfortable vehicle motion can be acquired when the function is active.","PeriodicalId":186596,"journal":{"name":"2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2011.6083082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We present a novel safety function for prevention of vehicle control loss. The safety function overcomes some of the limitations of conventional Electronic Stability Control (ESC) systems. Based on sensor information about the host vehicle's state and the road ahead, a threat assessment algorithm predicts the future evolution of the vehicle's state. If the vehicle motion, predicted over a finite time horizon violates safety constraints, autonomous deceleration is activated in order to prevent vehicle loss of control. The safety function has been implemented in real-time. Experimental results indicate that the safety function relies less on the driver's skills than conventional ESC systems and that a more controllable and comfortable vehicle motion can be acquired when the function is active.