{"title":"Impedance measurements at millimeter wave frequencies (54.2 GHz)","authors":"O. Petersen, C. Bradford, R. Cranmer","doi":"10.1109/ISSCC.1977.1155700","DOIUrl":null,"url":null,"abstract":"A WAVEGUIDE CIRCUIT (Figure 1) has been designed and constructed to measure impedance a t millimeter wave frequencies. To calculate the load impedance, known standards were used to characterize the network transformation between the p l y e of measurement and the load location. Measurements were performed at 54.2 GHz on specially fabricated loads and on mm-wave PIN diodes. A series of independent measurements were made to determine the relative phase and magnitude of the complex reflection coefficient of the load. Bolometer measurements at the output of the 3-dB coupler are essential to the circuit design. The phase was measured by the amount of cancellation which occurs when the reflected signal is fed into the 3-dB four-port directional coupler and compared to a reference signal fed into the other input port. The magnitude was measured by comparing the signal reflected from the load to that reflected by the reference short (waveguide switch #l) . During the latter measurement, the reference signal is terminated (waveguide switch #2).","PeriodicalId":416313,"journal":{"name":"1977 IEEE International Solid-State Circuits Conference. Digest of Technical Papers","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1977 IEEE International Solid-State Circuits Conference. Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.1977.1155700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A WAVEGUIDE CIRCUIT (Figure 1) has been designed and constructed to measure impedance a t millimeter wave frequencies. To calculate the load impedance, known standards were used to characterize the network transformation between the p l y e of measurement and the load location. Measurements were performed at 54.2 GHz on specially fabricated loads and on mm-wave PIN diodes. A series of independent measurements were made to determine the relative phase and magnitude of the complex reflection coefficient of the load. Bolometer measurements at the output of the 3-dB coupler are essential to the circuit design. The phase was measured by the amount of cancellation which occurs when the reflected signal is fed into the 3-dB four-port directional coupler and compared to a reference signal fed into the other input port. The magnitude was measured by comparing the signal reflected from the load to that reflected by the reference short (waveguide switch #l) . During the latter measurement, the reference signal is terminated (waveguide switch #2).