A CNN-LSTM Model Trained with Grey Wolf Optimizer for Prediction of Household Power Consumption

Shilpa Gottam, S. Nanda, R. Maddila
{"title":"A CNN-LSTM Model Trained with Grey Wolf Optimizer for Prediction of Household Power Consumption","authors":"Shilpa Gottam, S. Nanda, R. Maddila","doi":"10.1109/iSES52644.2021.00089","DOIUrl":null,"url":null,"abstract":"Recent trends in research reveal evolution of hybrid machine learning models based on deep neural networks and nature inspired computing. In this paper, a combined model of convolutional neural network (CNN) and long-short term memory (LSTM) termed as CNN-LSTM network has been used for modelling. A popular swarm intelligence technique Grey Wolf optimizer (GWO) is used to compute the meaningful and best hyper-parameters of the CNN-LSTM network. The GWO algorithm has become popular due to its ability of fast convergence and determining accurate solutions among other meta-heuristic techniques. The proposed hybrid model has been suitably applied to predict the household power consumption. Simulation results reveal the superior accuracy achieved by the proposed model compared to the same CNN-LSTM model trained with particle swarm optimization, artificial bee colony and social spider optimization.","PeriodicalId":293167,"journal":{"name":"2021 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSES52644.2021.00089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Recent trends in research reveal evolution of hybrid machine learning models based on deep neural networks and nature inspired computing. In this paper, a combined model of convolutional neural network (CNN) and long-short term memory (LSTM) termed as CNN-LSTM network has been used for modelling. A popular swarm intelligence technique Grey Wolf optimizer (GWO) is used to compute the meaningful and best hyper-parameters of the CNN-LSTM network. The GWO algorithm has become popular due to its ability of fast convergence and determining accurate solutions among other meta-heuristic techniques. The proposed hybrid model has been suitably applied to predict the household power consumption. Simulation results reveal the superior accuracy achieved by the proposed model compared to the same CNN-LSTM model trained with particle swarm optimization, artificial bee colony and social spider optimization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于灰狼优化器训练的CNN-LSTM家庭用电量预测模型
最近的研究趋势揭示了基于深度神经网络和自然启发计算的混合机器学习模型的进化。本文采用卷积神经网络(CNN)和长短期记忆(LSTM)相结合的模型,即CNN-LSTM网络进行建模。采用一种流行的群体智能技术灰狼优化器(GWO)来计算CNN-LSTM网络的有意义和最佳超参数。在其他元启发式技术中,GWO算法因其快速收敛和确定准确解的能力而受到欢迎。所提出的混合模型在家庭用电量预测中得到了较好的应用。仿真结果表明,与采用粒子群算法、人工蜂群算法和社交蜘蛛算法训练的CNN-LSTM模型相比,该模型具有更高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation of Self-Controlled Wheelchairs based on Joystick, Gesture Motion and Voice Recognition Dynamic Two Hand Gesture Recognition using CNN-LSTM based networks Performance Assessment of Dual Metal Graded Channel Negative Capacitance Junctionless FET for Digital/Analog field VLSI Architecture of Sigmoid Activation Function for Rapid Prototyping of Machine Learning Applications. Influence of Nanosilica in PVDF Thin Films for Sensing Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1