Off-grid DOA Estimation for Temporally Correlated Source via Robust Block-SBL in Mutual Coupling

Huafei Wang, Xianpeng Wang, Mengxing Huang, Xiang Lan, Liangtian Wan
{"title":"Off-grid DOA Estimation for Temporally Correlated Source via Robust Block-SBL in Mutual Coupling","authors":"Huafei Wang, Xianpeng Wang, Mengxing Huang, Xiang Lan, Liangtian Wan","doi":"10.1109/piers55526.2022.9793226","DOIUrl":null,"url":null,"abstract":"In the field of array signal parameter estimation, the research on direction-of-arrival estimation (DOA) by using the sparse Bayesian learning (SBL) technique has always been a very important aspect. Most of the existing SBL-based methods are not consider the temporal correlation between snapshots, which is not consistent with the real environment. Hence, the block sparse Bayesian learning (Block-SBL) has recently received a lot of attention. To enhance the robustness of the traditional Block-SBL based method to mutual coupling (MC), a robust Block-SBL method is proposed to achieve off-grid DOA estimation for temporally correlated source in this paper. Firstly, in the proposed method, a linear transformation is conducted based on the banded complex symmetric Toeplitz structure of the mutual coupling matrix (MCM) to eliminate the influence of MC between the array elements. Then, in order to improve the estimation performance, the signal subspace fitting (SSF) technique is introduced to construct an equivalent signal model, which is realized by eigenvalue decomposition of the received signal covariance matrix. Based on the constructed equivalent signal model, the SBL process is finally utilized to estimate parameters. In the process of the estimation of parameters, the equivalent signal variance is estimation by expectation maximization (EM) method and the off-grid error is reduced by the dynamic updating of spatial discrete grid points, which is realized by finding the roots of a polynomial. The simulation results demonstrate that the proposed method is more robust to the off-grid error and array mutual coupling, and can provide better DOA estimation performance than the traditional SBL and Block-SBL method.","PeriodicalId":422383,"journal":{"name":"2022 Photonics & Electromagnetics Research Symposium (PIERS)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Photonics & Electromagnetics Research Symposium (PIERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/piers55526.2022.9793226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In the field of array signal parameter estimation, the research on direction-of-arrival estimation (DOA) by using the sparse Bayesian learning (SBL) technique has always been a very important aspect. Most of the existing SBL-based methods are not consider the temporal correlation between snapshots, which is not consistent with the real environment. Hence, the block sparse Bayesian learning (Block-SBL) has recently received a lot of attention. To enhance the robustness of the traditional Block-SBL based method to mutual coupling (MC), a robust Block-SBL method is proposed to achieve off-grid DOA estimation for temporally correlated source in this paper. Firstly, in the proposed method, a linear transformation is conducted based on the banded complex symmetric Toeplitz structure of the mutual coupling matrix (MCM) to eliminate the influence of MC between the array elements. Then, in order to improve the estimation performance, the signal subspace fitting (SSF) technique is introduced to construct an equivalent signal model, which is realized by eigenvalue decomposition of the received signal covariance matrix. Based on the constructed equivalent signal model, the SBL process is finally utilized to estimate parameters. In the process of the estimation of parameters, the equivalent signal variance is estimation by expectation maximization (EM) method and the off-grid error is reduced by the dynamic updating of spatial discrete grid points, which is realized by finding the roots of a polynomial. The simulation results demonstrate that the proposed method is more robust to the off-grid error and array mutual coupling, and can provide better DOA estimation performance than the traditional SBL and Block-SBL method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
互耦条件下时间相关源的鲁棒块sbl离网DOA估计
现有的基于sbl的方法大多没有考虑快照之间的时间相关性,与实际环境不一致。因此,块稀疏贝叶斯学习(block - sbl)近年来受到了广泛的关注。为了提高传统基于Block-SBL方法对互耦(MC)的鲁棒性,本文提出了一种鲁棒Block-SBL方法来实现时间相关源的离网DOA估计。该方法首先对互耦矩阵(MCM)的带状复对称Toeplitz结构进行线性变换,消除阵列元素间互耦矩阵的影响;然后,为了提高估计性能,引入信号子空间拟合(SSF)技术构建等效信号模型,通过对接收信号协方差矩阵的特征值分解实现等效信号模型;在建立等效信号模型的基础上,最后利用SBL过程进行参数估计。在参数估计过程中,采用期望最大化法估计等效信号方差,并通过求多项式的根实现空间离散网格点的动态更新来减小离网误差。仿真结果表明,该方法对离网误差和阵列相互耦合具有更强的鲁棒性,比传统的SBL和Block-SBL方法具有更好的DOA估计性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial Doppler and Micro-Doppler Effect Induced by Time-modulated Metasurface A Physics-based Compact Model for Set Process of Resistive Random Access Memory (RRAM) with Graphene Electrode An Overview of Metamaterial Absorbers and Their Applications on Antennas Spatio-Temporal Data Prediction of Braking System Based on Residual Error Homogenization Based Fast Computation of Electromagnetic Scattering by Inhomogeneous Objects with Honeycomb Structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1