Prediksi Prestasi Akademik Mahasiswa Bekerja Paruh Waktu Menggunakan Artificial Neural Network

Yuhelmi Yuhelmi, Taslim Taslim, Syamsidar Syamsidar, Machdalena Machdalena
{"title":"Prediksi Prestasi Akademik Mahasiswa Bekerja Paruh Waktu Menggunakan Artificial Neural Network","authors":"Yuhelmi Yuhelmi, Taslim Taslim, Syamsidar Syamsidar, Machdalena Machdalena","doi":"10.35314/isi.v7i1.2368","DOIUrl":null,"url":null,"abstract":"Abstrack – Students who work part-time are required to be able to divide their time effectively and efficiently between time for work and time for study. The prediction of those who study while working is expected to be one of the policy considerations for the academic side so that students who work while working can complete their study period on time. This research begins with the stage of collecting data from students who are studying while working for the next data cleaning process. The data is then divided into two groups of data, namely training data and testing data which are normalized by the min-max method. Neural network algorithms are used to predict the results of studies for those who study while working which are categorized into 3 labels. Optimization is carried out on the parameters by utilizing the optimize parameter tool. In model testing, the parameters displayed are training cycle, learning rate, momentum, accuracy and RMSE value with a range of learning rate and momentum values from 0.1 to 0.9, with a sigmoid activation function. The best value validation was obtained in the training cycle 201, learning rate 0.74, momentum 0.9 with an accuracy value of 89.62%, RMSE 0.263 with a value of k-fold = 3.","PeriodicalId":354905,"journal":{"name":"INOVTEK Polbeng - Seri Informatika","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INOVTEK Polbeng - Seri Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35314/isi.v7i1.2368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstrack – Students who work part-time are required to be able to divide their time effectively and efficiently between time for work and time for study. The prediction of those who study while working is expected to be one of the policy considerations for the academic side so that students who work while working can complete their study period on time. This research begins with the stage of collecting data from students who are studying while working for the next data cleaning process. The data is then divided into two groups of data, namely training data and testing data which are normalized by the min-max method. Neural network algorithms are used to predict the results of studies for those who study while working which are categorized into 3 labels. Optimization is carried out on the parameters by utilizing the optimize parameter tool. In model testing, the parameters displayed are training cycle, learning rate, momentum, accuracy and RMSE value with a range of learning rate and momentum values from 0.1 to 0.9, with a sigmoid activation function. The best value validation was obtained in the training cycle 201, learning rate 0.74, momentum 0.9 with an accuracy value of 89.62%, RMSE 0.263 with a value of k-fold = 3.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
兼职用人工神经网络预测学生的学业成绩
摘要:兼职的学生需要能够有效地分配他们的工作时间和学习时间。对边打工边学的预测,有望成为学术方面的政策考虑之一,使边打工边学的学生能够按时完成学业。本研究从收集正在学习的学生的数据阶段开始,这些学生正在为下一个数据清理过程工作。然后将数据分为两组数据,即训练数据和测试数据,并通过最小-最大方法进行归一化。神经网络算法用于预测那些边工作边学习的人的学习结果,这些结果分为3个标签。利用优化参数工具对参数进行优化。在模型测试中,显示的参数为训练周期、学习率、动量、准确率和RMSE值,学习率和动量的取值范围为0.1 ~ 0.9,具有s型激活函数。在训练周期201获得最佳值验证,学习率为0.74,动量为0.9,正确率为89.62%,RMSE为0.263,k-fold = 3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sistem Monitoring Suhu Dan Kelembaban Pada Mesin Pembiakan Telur Jangkrik Berbasis IoT Systematic Literature Review: Perbandingan Algoritma Klasifikasi Pengembangan Media Interaktif Berbasis Augmented Reality untuk Melatih Kemampuan Critical Thinking Perencanaan Arsitektur Enterprise Menggunakan Framework TOGAF (The Open Group Architecture Framework) Implementasi Internet Of Things Pada Protokol MQTT Dan HTTP Dalam Sistem Pendeteksi Banjir
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1