I. Martinez-Sanz, B. Chaudhuri, A. Junyent-Ferré, V. Trovato, G. Strbac
{"title":"Distributed vs. concentrated rapid frequency response provision in future great britain system","authors":"I. Martinez-Sanz, B. Chaudhuri, A. Junyent-Ferré, V. Trovato, G. Strbac","doi":"10.1109/PESGM.2016.7741970","DOIUrl":null,"url":null,"abstract":"Two major sources of rapid frequency response (RFR) to counter the reducing system inertia problem of the Great Britain (GB) system are “synthetic inertia” from wind turbines and fast demand response (FDR). In this paper, we consider a future low inertia scenario to show the effectiveness of RFR provision from the large offshore wind farms (OWFs) planned in the North Sea (concentrated response) against FDR from loads spread across the GB system (distributed response). The spatial variation in transient frequencies, which can be pronounced in the aftermath of a disturbance and is critical for the response activation of these actuators, is accounted. Case studies using a reduced GB system model show the effectiveness of distributed FDR and concentrated support from OWFs in providing RFR when disturbances occur in different areas of the system where different inertia levels are present.","PeriodicalId":155315,"journal":{"name":"2016 IEEE Power and Energy Society General Meeting (PESGM)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Power and Energy Society General Meeting (PESGM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESGM.2016.7741970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Two major sources of rapid frequency response (RFR) to counter the reducing system inertia problem of the Great Britain (GB) system are “synthetic inertia” from wind turbines and fast demand response (FDR). In this paper, we consider a future low inertia scenario to show the effectiveness of RFR provision from the large offshore wind farms (OWFs) planned in the North Sea (concentrated response) against FDR from loads spread across the GB system (distributed response). The spatial variation in transient frequencies, which can be pronounced in the aftermath of a disturbance and is critical for the response activation of these actuators, is accounted. Case studies using a reduced GB system model show the effectiveness of distributed FDR and concentrated support from OWFs in providing RFR when disturbances occur in different areas of the system where different inertia levels are present.