Extended boundary shift integral

J. Lötjönen, C. Ledig, J. Koikkalainen, R. Wolz, L. Thurfjell, H. Soininen, S. Ourselin, D. Rueckert
{"title":"Extended boundary shift integral","authors":"J. Lötjönen, C. Ledig, J. Koikkalainen, R. Wolz, L. Thurfjell, H. Soininen, S. Ourselin, D. Rueckert","doi":"10.1109/ISBI.2014.6868005","DOIUrl":null,"url":null,"abstract":"The boundary shift integral (BSI) is a widely used method for measuring atrophy rate, dynamic changes of the gray-matter and cerebrospinal fluid boundaries in magnetic resonance images. BSI is based on intensity differences on this boundary region. This work extends the method in two respects: 1) Instead of using only intensity information on the boundary region, a probabilistic approach is proposed in which also other characteristics of the boundary region can be used. 2) The use of the probabilistic model enables to measure changes between any structures or combination of structures in the image. The performance of the extended BSI is verified against standard BSI in the ADNI and AIBL cohorts. The area-under-the-curve is clearly above 90 % in both cohorts when comparing the classification between cognitively normal and Alzheimer's disease groups. The accuracies of the extended BSI were higher than the standard BSI between these groups.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6868005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The boundary shift integral (BSI) is a widely used method for measuring atrophy rate, dynamic changes of the gray-matter and cerebrospinal fluid boundaries in magnetic resonance images. BSI is based on intensity differences on this boundary region. This work extends the method in two respects: 1) Instead of using only intensity information on the boundary region, a probabilistic approach is proposed in which also other characteristics of the boundary region can be used. 2) The use of the probabilistic model enables to measure changes between any structures or combination of structures in the image. The performance of the extended BSI is verified against standard BSI in the ADNI and AIBL cohorts. The area-under-the-curve is clearly above 90 % in both cohorts when comparing the classification between cognitively normal and Alzheimer's disease groups. The accuracies of the extended BSI were higher than the standard BSI between these groups.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扩展边界移积分
边界位移积分(BSI)是一种广泛应用于测量磁共振图像中灰质和脑脊液边界的萎缩率、动态变化的方法。BSI基于该边界区域的强度差。本文从两个方面对该方法进行了扩展:1)提出了一种可以利用边界区域的其他特征的概率方法,而不是仅使用边界区域的强度信息。2)使用概率模型可以测量图像中任何结构或结构组合之间的变化。在ADNI和AIBL队列中,根据标准BSI验证了扩展BSI的性能。当比较认知正常组和阿尔茨海默病组的分类时,两个队列的曲线下面积明显高于90%。两组间扩展BSI的准确度均高于标准BSI。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MRI based attenuation correction for PET/MRI via MRF segmentation and sparse regression estimated CT DTI-DeformIt: Generating ground-truth validation data for diffusion tensor image analysis tasks Functional parcellation of the hippocampus by clustering resting state fMRI signals Detecting cell assembly interaction patterns via Bayesian based change-point detection and graph inference model Topological texture-based method for mass detection in breast ultrasound image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1