{"title":"Metal-complex/semiconductor hybrids for carbon dioxide fixation","authors":"K. Maeda, R. Kuriki, Keita Sekizawa, O. Ishitani","doi":"10.1117/12.2187341","DOIUrl":null,"url":null,"abstract":"A hybrid photocatalyst consisting of a catalytic Ru complex and polymeric carbon nitride (band gap, 2.7 eV) was capable of reducing CO2 into HCOOH with ~80% selectivity under visible light (λ > 420 nm) in the presence of a suitable electron donor. Introduction of mesoporosity into the graphitic carbon nitride structure to increase the specific surface area was essential to enhancing the activity. However, higher surface area (in other words, lower crystallinity) that originated from excessively introduced mesopores had a negative impact on activity. Promoting electron injection from carbon nitride to the catalytic Ru unit as well as strengthening the electronic interactions between the two units improved the activity. Under the optimal condition, a turnover number (TON, with respect to the Ru complex used) greater than 1000 and an apparent quantum yield of 5.7% (at 400 nm) were obtained, which are the greatest among heterogeneous photocatalysts for visible-light CO2 reduction ever reported.","PeriodicalId":142821,"journal":{"name":"SPIE Optics + Photonics for Sustainable Energy","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Optics + Photonics for Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2187341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
A hybrid photocatalyst consisting of a catalytic Ru complex and polymeric carbon nitride (band gap, 2.7 eV) was capable of reducing CO2 into HCOOH with ~80% selectivity under visible light (λ > 420 nm) in the presence of a suitable electron donor. Introduction of mesoporosity into the graphitic carbon nitride structure to increase the specific surface area was essential to enhancing the activity. However, higher surface area (in other words, lower crystallinity) that originated from excessively introduced mesopores had a negative impact on activity. Promoting electron injection from carbon nitride to the catalytic Ru unit as well as strengthening the electronic interactions between the two units improved the activity. Under the optimal condition, a turnover number (TON, with respect to the Ru complex used) greater than 1000 and an apparent quantum yield of 5.7% (at 400 nm) were obtained, which are the greatest among heterogeneous photocatalysts for visible-light CO2 reduction ever reported.