Distributed data fusion using support vector machines

Subhash Challa, M. Palaniswami, A. Shilton
{"title":"Distributed data fusion using support vector machines","authors":"Subhash Challa, M. Palaniswami, A. Shilton","doi":"10.1109/ICIF.2002.1020902","DOIUrl":null,"url":null,"abstract":"The basic quantity to be estimated in the Bayesian approach to data fusion is the conditional probability density function (CPDF). Computationally efficient particle filtering approaches are becoming more important in estimating these CPDFs. In this approach, IID samples are used to represent the conditional probability densities. However, their application in data fusion is severely limited due to the fact that the information is stored in the form of a large set of samples. In all practical data fusion systems that have limited communication bandwidth, broadcasting this probabilistic information, available as a set of samples, to the fusion center is impractical. Support vector machines, through statistical learning theory, provide a way of compressing information by generating optimal kernal based representations. In this paper we use SVM to compress the probabilistic information available in the form of IID samples and apply it to solve the Bayesian data fusion problem. We demonstrate this technique on a multi-sensor tracking example.","PeriodicalId":399150,"journal":{"name":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2002.1020902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

The basic quantity to be estimated in the Bayesian approach to data fusion is the conditional probability density function (CPDF). Computationally efficient particle filtering approaches are becoming more important in estimating these CPDFs. In this approach, IID samples are used to represent the conditional probability densities. However, their application in data fusion is severely limited due to the fact that the information is stored in the form of a large set of samples. In all practical data fusion systems that have limited communication bandwidth, broadcasting this probabilistic information, available as a set of samples, to the fusion center is impractical. Support vector machines, through statistical learning theory, provide a way of compressing information by generating optimal kernal based representations. In this paper we use SVM to compress the probabilistic information available in the form of IID samples and apply it to solve the Bayesian data fusion problem. We demonstrate this technique on a multi-sensor tracking example.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于支持向量机的分布式数据融合
贝叶斯数据融合方法中需要估计的基本量是条件概率密度函数(CPDF)。计算效率高的粒子滤波方法在估计这些cpdf方面变得越来越重要。在这种方法中,IID样本被用来表示条件概率密度。然而,由于信息以大样本的形式存储,它们在数据融合中的应用受到严重限制。在所有通信带宽有限的实际数据融合系统中,将这些概率信息作为一组样本广播到融合中心是不切实际的。支持向量机,通过统计学习理论,提供了一种通过生成最优的基于核的表示来压缩信息的方法。本文利用支持向量机对IID样本中可用的概率信息进行压缩,并应用于贝叶斯数据融合问题。我们在一个多传感器跟踪示例中演示了该技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Approximating fuzzy measures by hierarchically decomposable ones Tracking and fusion for wireless sensor networks A dynamic communication model for loosely coupled hybrid tracking systems On platform-based sensor management An improved Bayes fusion algorithm with the Parzen window method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1