Laser assisted and hermetic room temperature bonding based on direct bonding technology

J. Haneveld, P. Tijssen, J. Oonk, M. Olde Riekerink, H. Tigelaar, R. van't Oever, M. Blom
{"title":"Laser assisted and hermetic room temperature bonding based on direct bonding technology","authors":"J. Haneveld, P. Tijssen, J. Oonk, M. Olde Riekerink, H. Tigelaar, R. van't Oever, M. Blom","doi":"10.1117/12.2040237","DOIUrl":null,"url":null,"abstract":"A novel method for laser assisted room temperature bonding of two substrates is presented. The method enables the packaging of delicate (bio)structures and/or finished (MEMS) devices, as there is no need for a high temperature annealing process. This also allows the bonding of two substrates with non-matching thermal expansion coefficients. The basis of the presented technology is the ability to create a direct pre-bond between two substrates. These can be two glass substrates, of which one has a thin film metal coating (e.g. Cr. Ti, Ta, Au…), or a silicon-glass combination. After (aligned) pre-bonding of the two wafers, a laser (e.g. a Nd:YAG laser) is used to form a permanent bond line on the bond interface, using the metal layer as a light absorber (or the silicon, in the case of a glass-silicon combination). The permanent bond line width is in the order of 10-50μm. The use of a laser to form the permanent bond ensures a hermetic sealing of the total package; a distinctive advantage over other, more conventional methods of room temperature bonding (e.g. adhesive bonding). He-leak testing showed leak rates in the order of 10-9 mbar l/s. This meets the failure criteria of the MIL-STD-883H standard of 5x10-8 mbar l/s. An added functionality of the proposed method is the possibility to create electrical circuitry on the bond interface, using the laser to modify the metal interlayer, rendering it electrically non-conductive. Biocompatible packages are also possible, by choosing the appropriate interlayer material. This would allow for the fabrication of implantable packages.","PeriodicalId":395835,"journal":{"name":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2040237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A novel method for laser assisted room temperature bonding of two substrates is presented. The method enables the packaging of delicate (bio)structures and/or finished (MEMS) devices, as there is no need for a high temperature annealing process. This also allows the bonding of two substrates with non-matching thermal expansion coefficients. The basis of the presented technology is the ability to create a direct pre-bond between two substrates. These can be two glass substrates, of which one has a thin film metal coating (e.g. Cr. Ti, Ta, Au…), or a silicon-glass combination. After (aligned) pre-bonding of the two wafers, a laser (e.g. a Nd:YAG laser) is used to form a permanent bond line on the bond interface, using the metal layer as a light absorber (or the silicon, in the case of a glass-silicon combination). The permanent bond line width is in the order of 10-50μm. The use of a laser to form the permanent bond ensures a hermetic sealing of the total package; a distinctive advantage over other, more conventional methods of room temperature bonding (e.g. adhesive bonding). He-leak testing showed leak rates in the order of 10-9 mbar l/s. This meets the failure criteria of the MIL-STD-883H standard of 5x10-8 mbar l/s. An added functionality of the proposed method is the possibility to create electrical circuitry on the bond interface, using the laser to modify the metal interlayer, rendering it electrically non-conductive. Biocompatible packages are also possible, by choosing the appropriate interlayer material. This would allow for the fabrication of implantable packages.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于直接键合技术的激光辅助和密闭室温键合
提出了一种激光辅助下两基材室温键合的新方法。该方法使精密(生物)结构和/或成品(MEMS)器件的封装成为可能,因为不需要高温退火过程。这也允许两个热膨胀系数不匹配的衬底结合。所提出的技术的基础是能够在两个基板之间创建直接预键。这些可以是两个玻璃基板,其中一个具有薄膜金属涂层(例如Cr、Ti、Ta、Au…),或硅-玻璃组合。在两个晶圆(对齐)预键合之后,使用激光(例如Nd:YAG激光)在键合界面上形成永久键合线,使用金属层作为光吸收剂(或者硅,在玻璃硅组合的情况下)。永久粘结线宽度约为10 ~ 50μm。使用激光形成永久粘合,确保整个封装的密封;与其他更传统的室温粘合方法(例如粘合剂粘合)相比,具有明显的优势。he泄漏测试显示泄漏率为10-9毫巴/秒。这符合MIL-STD-883H 5 × 10- 8mbar l/s标准的失效标准。所提出的方法的一个附加功能是可以在键合界面上创建电路,使用激光修改金属中间层,使其不导电。通过选择合适的中间层材料,生物相容性封装也是可能的。这将允许制造可植入的封装。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optomechanical cantilever device for displacement sensing and variable attenuator Application of rigorously optimized phase masks for the fabrication of binary and blazed gratings with diffractive proximity lithography Evaluation of silicon tuning-fork resonators under space-relevant radiation conditions UV-curable hybrid polymers for optical applications: technical challenges, industrial solutions, and future developments Integration of real-time 3D image acquisition and multiview 3D display
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1