An improved FCM clustering algorithm based on cosine similarity

Minxuan Li
{"title":"An improved FCM clustering algorithm based on cosine similarity","authors":"Minxuan Li","doi":"10.1145/3335656.3335693","DOIUrl":null,"url":null,"abstract":"Based on the traditional Fuzzy C-means (FCM) clustering algorithm, this study adds cosine similarity as a correction factor and optimizes the FCM algorithm by optimizing the membership degree of the objective function. The results show that the matrix estimation error obtained by the improved algorithm is smaller and the precision is higher, which can reduce the normalized mean square error by about 20.67%, and the angular deviation is reduced by about 8° on average.","PeriodicalId":396772,"journal":{"name":"Proceedings of the 2019 International Conference on Data Mining and Machine Learning","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 International Conference on Data Mining and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3335656.3335693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Based on the traditional Fuzzy C-means (FCM) clustering algorithm, this study adds cosine similarity as a correction factor and optimizes the FCM algorithm by optimizing the membership degree of the objective function. The results show that the matrix estimation error obtained by the improved algorithm is smaller and the precision is higher, which can reduce the normalized mean square error by about 20.67%, and the angular deviation is reduced by about 8° on average.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于余弦相似度的改进FCM聚类算法
本研究在传统模糊c均值(Fuzzy C-means, FCM)聚类算法的基础上,加入余弦相似度作为校正因子,通过优化目标函数的隶属度对FCM算法进行优化。结果表明,改进算法得到的矩阵估计误差更小,精度更高,可将归一化均方误差降低约20.67%,角偏差平均降低约8°。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Code Plagiarism Detection Model Based on Random Forest and Gradient Boosting Decision Tree Research on Vehicle Identification Method Based on Computer Vision Simulation for Agglomeration Effect of Internet Crowdfunding Model An improved FCM clustering algorithm based on cosine similarity Research on offline behavior similarity of consumers based on Spatio-temporal data set mining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1