USRP N210 demonstration of wideband sensing and blind hierarchical modulation classification

M. Laghate, S. Chaudhari, D. Cabric
{"title":"USRP N210 demonstration of wideband sensing and blind hierarchical modulation classification","authors":"M. Laghate, S. Chaudhari, D. Cabric","doi":"10.1109/DySPAN.2017.7920748","DOIUrl":null,"url":null,"abstract":"Blind modulation classification problem is particularly difficult when the exact frequency band of the signal is unknown since the modulation classifiers require accurate estimates of the signal parameters such as center frequency, bandwidth, and SNR. In this work, we demonstrate a hierarchical classification tree that filters and classifies a received signal as AM, FM, 4/16/64-QAM, 2/4/8-PAM, 4/8/16-PSK, DSSS, and FSK. Coarse estimates of signal parameters are obtained from energy detection and are refined using cyclostationary estimators. Cumulants and cyclostationarity are used to classify AM and FM while a reduced complexity Kuiper test is used for differentiating modulation level for QAM, PAM, and PSK. The effects of multipath are countered using a blind equalizer. The classifier is implemented in C++ using GNURadio libraries and is demonstrated using a USRP N210.","PeriodicalId":221877,"journal":{"name":"2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DySPAN.2017.7920748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Blind modulation classification problem is particularly difficult when the exact frequency band of the signal is unknown since the modulation classifiers require accurate estimates of the signal parameters such as center frequency, bandwidth, and SNR. In this work, we demonstrate a hierarchical classification tree that filters and classifies a received signal as AM, FM, 4/16/64-QAM, 2/4/8-PAM, 4/8/16-PSK, DSSS, and FSK. Coarse estimates of signal parameters are obtained from energy detection and are refined using cyclostationary estimators. Cumulants and cyclostationarity are used to classify AM and FM while a reduced complexity Kuiper test is used for differentiating modulation level for QAM, PAM, and PSK. The effects of multipath are countered using a blind equalizer. The classifier is implemented in C++ using GNURadio libraries and is demonstrated using a USRP N210.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
宽带传感和盲分层调制分类的USRP N210演示
当信号的确切频带未知时,盲调制分类问题尤其困难,因为调制分类器需要准确估计信号参数,如中心频率、带宽和信噪比。在这项工作中,我们展示了一种分层分类树,该树过滤并分类接收到的信号为AM, FM, 4/16/64-QAM, 2/4/8-PAM, 4/8/16-PSK, DSSS和FSK。从能量检测中得到信号参数的粗估计,并使用循环平稳估计器进行细化。累积量和循环平稳性用于对AM和FM进行分类,而降低复杂度的Kuiper测试用于区分QAM, PAM和PSK的调制水平。使用盲均衡器来抵消多径的影响。该分类器使用GNURadio库在c++中实现,并使用USRP N210进行演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Field trial of the 3.5 GHz citizens broadband radio service governed by a spectrum access system (SAS) Design and implementation of the Secondary User-Enhanced Spectrum Sharing (SUESS) radio Enhanced 5G spectrum sharing using a new adaptive NC-OFDM waveform with reconfigurable antennas USRP N210 demonstration of wideband sensing and blind hierarchical modulation classification Joint transmission and cooperative spectrum sensing scheduling optimization in multi-channel dynamic spectrum access networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1