Covid 19 Prediction from X Ray Images Using Fully Connected Convolutional Neural Network

Sanghamita Bhoumik, Sayantan Chatterjee, Ankur Sarkar, Abhishek Kumar, Ferdin Joe John Joseph
{"title":"Covid 19 Prediction from X Ray Images Using Fully Connected Convolutional Neural Network","authors":"Sanghamita Bhoumik, Sayantan Chatterjee, Ankur Sarkar, Abhishek Kumar, Ferdin Joe John Joseph","doi":"10.1145/3429210.3429233","DOIUrl":null,"url":null,"abstract":"COVID 19 pandemic has paralyzed the whole world irrespective of any discrimination. To contain the infection effective testing of people plays a vital role. Usually, chest X-ray image-based diagnosis using manual methods is carried out, which is not only time-consuming but also paves way for asymptomatic patients to transmit the virus at a faster pace. Chest X-ray image analysis using a fully connected convolutional neural network (CNN) has been proposed in this paper to solve the purpose. The fully connected CNN with two variants of convolution especially DSC has proved its efficiency in detecting COVID 19 infections.","PeriodicalId":164790,"journal":{"name":"CSBio '20: Proceedings of the Eleventh International Conference on Computational Systems-Biology and Bioinformatics","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSBio '20: Proceedings of the Eleventh International Conference on Computational Systems-Biology and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3429210.3429233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

COVID 19 pandemic has paralyzed the whole world irrespective of any discrimination. To contain the infection effective testing of people plays a vital role. Usually, chest X-ray image-based diagnosis using manual methods is carried out, which is not only time-consuming but also paves way for asymptomatic patients to transmit the virus at a faster pace. Chest X-ray image analysis using a fully connected convolutional neural network (CNN) has been proposed in this paper to solve the purpose. The fully connected CNN with two variants of convolution especially DSC has proved its efficiency in detecting COVID 19 infections.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于全连接卷积神经网络的X射线图像预测Covid - 19
COVID - 19大流行使整个世界陷入瘫痪,没有任何歧视。有效的人员检测对控制感染起着至关重要的作用。通常,基于胸部x线图像的诊断采用人工方法,不仅耗时,而且为无症状患者更快地传播病毒铺平了道路。为了解决这一问题,本文提出了使用全连接卷积神经网络(CNN)对胸部x线图像进行分析。采用两种卷积变体的全连接CNN,特别是DSC,已经证明了其检测COVID - 19感染的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting Dihydroartemisinin Resistance in Plasmodium falciparum using Pathway Activity Inference An Image Segment-based Classification for Chest X-Ray Image Classification of Protein Crystallization Images using EfficientNet with Data Augmentation Covid 19 Prediction from X Ray Images Using Fully Connected Convolutional Neural Network Uncovering RNA and DNA Modifications from Native Sequences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1