Genetic Algorithm Methodology for Broken Bar Detection in Induction Motor at Low Frequency and Load Operation

D. A. Elvira-Ortiz, D. Morinigo-Sotelo, Á. Zorita-Lamadrid, R. Osornio-Ríos, R. Romero-Troncoso
{"title":"Genetic Algorithm Methodology for Broken Bar Detection in Induction Motor at Low Frequency and Load Operation","authors":"D. A. Elvira-Ortiz, D. Morinigo-Sotelo, Á. Zorita-Lamadrid, R. Osornio-Ríos, R. Romero-Troncoso","doi":"10.1109/DEMPED.2019.8864879","DOIUrl":null,"url":null,"abstract":"Broken rotor bar (BRB) detection in induction motors (1M) is a challenging task because the associated failure frequencies appear near the fundamental frequency component (FFC). This identification becomes harder when the IM operates at a low frequency or with low load conditions. Therefore, techniques like motor current signature analysis may suffer on properly detecting the existence and the severity of the fault. In this sense, suppressing the FFC results helpful to improve results in the condition monitoring of IM operating at low load. This work proposes the use of a genetic algorithm for estimating and suppressing the FFC in the current signals from an IM with a BRB. Experimental results prove that the use of this technique results in better and easier identification of BRB even when the motor works at low frequency or with a low load.","PeriodicalId":397001,"journal":{"name":"2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEMPED.2019.8864879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Broken rotor bar (BRB) detection in induction motors (1M) is a challenging task because the associated failure frequencies appear near the fundamental frequency component (FFC). This identification becomes harder when the IM operates at a low frequency or with low load conditions. Therefore, techniques like motor current signature analysis may suffer on properly detecting the existence and the severity of the fault. In this sense, suppressing the FFC results helpful to improve results in the condition monitoring of IM operating at low load. This work proposes the use of a genetic algorithm for estimating and suppressing the FFC in the current signals from an IM with a BRB. Experimental results prove that the use of this technique results in better and easier identification of BRB even when the motor works at low frequency or with a low load.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低频负载下感应电动机断条检测的遗传算法
在异步电动机(1M)中,转子断条(BRB)检测是一项具有挑战性的任务,因为相关的故障频率出现在基频分量(FFC)附近。当IM在低频率或低负载条件下工作时,这种识别变得更加困难。因此,像电机电流特征分析这样的技术在正确检测故障的存在和严重程度时可能会受到影响。从这个意义上说,抑制FFC结果有助于改善IM在低负荷下运行的状态监测结果。这项工作提出了使用遗传算法来估计和抑制带有BRB的IM当前信号中的FFC。实验结果表明,即使电机工作在低频率或低负荷下,使用该技术也能更好、更容易地识别出BRB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rotating HF signal injection method improvement based on robust phase-shift estimator for self-sensing control of IPMSM Transient analysis of the external magnetic field via MUSIC methods for the diagnosis of electromechanical faults in induction motors Optimization of magnetic flux paths in transverse flux machines through the use of iron wire wound materials A Survey of Multi-Sensor Systems for Online Fault Detection of Electric Machines On-line Transmission Line Fault Classification using Long Short-Term Memory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1