MapReduce Algorithms

J. Ullman
{"title":"MapReduce Algorithms","authors":"J. Ullman","doi":"10.1145/2778865.2778866","DOIUrl":null,"url":null,"abstract":"We begin with a sketch of how MapReduce works and how MapReduce algorithms differ from general parallel algorithms. While algorithm analysis usually centers on the serial or parallel running time of the algorithms that solve a given problem, in the MapReduce world, the critical issue is a tradeoff between interprocessor communication and the parallel running time. We examine a fundamental problem, in which the output depends on comparison of all pairs of inputs (the \"all-pairs\" problem), and show matching upper and lower bounds for the communication/time tradeoff. Finally, we consider special cases of all-pairs, where only a subset of the pairs of inputs are of interest; an example is the problem of similarity join.","PeriodicalId":116839,"journal":{"name":"Proceedings of the 2nd IKDD Conference on Data Sciences","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd IKDD Conference on Data Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2778865.2778866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We begin with a sketch of how MapReduce works and how MapReduce algorithms differ from general parallel algorithms. While algorithm analysis usually centers on the serial or parallel running time of the algorithms that solve a given problem, in the MapReduce world, the critical issue is a tradeoff between interprocessor communication and the parallel running time. We examine a fundamental problem, in which the output depends on comparison of all pairs of inputs (the "all-pairs" problem), and show matching upper and lower bounds for the communication/time tradeoff. Finally, we consider special cases of all-pairs, where only a subset of the pairs of inputs are of interest; an example is the problem of similarity join.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MapReduce算法
我们首先概述MapReduce的工作原理以及MapReduce算法与一般并行算法的区别。虽然算法分析通常集中在解决给定问题的算法的串行或并行运行时间上,但在MapReduce世界中,关键问题是在处理器间通信和并行运行时间之间进行权衡。我们研究了一个基本问题,其中输出依赖于所有输入对的比较(“全对”问题),并显示了通信/时间权衡的匹配上限和下限。最后,我们考虑全对的特殊情况,其中只有输入对的一个子集是感兴趣的;一个例子是相似连接问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Resilient Cities and Urban Analytics: The Role of Big Data and High Performance Pervasive Computing TrafficKarma: Estimating Effective Traffic Indicators using Public Data TraffTrend: Real time traffic updates and traffic trends using social media analytics MapReduce Algorithms Broad Data: Challenges on the emerging Web of data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1