{"title":"Electronic structures calculation of Si1−xSnx compound alloy using interacting quasi-band model","authors":"M. Oda, Yukina Kuroda, Ayaka Kishi, Y. Shinozuka","doi":"10.1109/ICIPRM.2016.7528635","DOIUrl":null,"url":null,"abstract":"We investigate energy band structures of Si<sub>1-x</sub>Sn<sub>x</sub> compound alloy in zincblende structure using interacting qasi-band (IQB) model. The previous IQB model has been developed for three element compound semiconductors such as A<sub>1-x</sub>B<sub>x</sub>D. To apply IQB for Si<sub>1-x</sub>Sn<sub>x</sub>, we here extend the IQB for four element compounds and calculate the electronic structures of virtual alloy as Si<sub>1-x</sub>Sn<sub>x</sub>Si<sub>1-y</sub>Sn<sub>y</sub>, where x=y. Diagonalizing a 20 × 20 non-Hermitian Hamiltonian matrix using sp3s* tight binding theory, we obtain quasi-band structures for several x. Comparing the band structures, we reveal that indirect-direct gap crossover in Si<sub>1-x</sub>Sn<sub>x</sub> occurs around x = 0.39.","PeriodicalId":357009,"journal":{"name":"2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)","volume":"226 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIPRM.2016.7528635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate energy band structures of Si1-xSnx compound alloy in zincblende structure using interacting qasi-band (IQB) model. The previous IQB model has been developed for three element compound semiconductors such as A1-xBxD. To apply IQB for Si1-xSnx, we here extend the IQB for four element compounds and calculate the electronic structures of virtual alloy as Si1-xSnxSi1-ySny, where x=y. Diagonalizing a 20 × 20 non-Hermitian Hamiltonian matrix using sp3s* tight binding theory, we obtain quasi-band structures for several x. Comparing the band structures, we reveal that indirect-direct gap crossover in Si1-xSnx occurs around x = 0.39.