1-D electronic density of states for InAs/InP Quantum Dashes probed by scanning tunneling spectroscopy

J. Girard, Konstantinos Papatryfonos, G. Rodary, C. David, F. Lelarge, A. Ramdane
{"title":"1-D electronic density of states for InAs/InP Quantum Dashes probed by scanning tunneling spectroscopy","authors":"J. Girard, Konstantinos Papatryfonos, G. Rodary, C. David, F. Lelarge, A. Ramdane","doi":"10.1109/ICIPRM.2016.7528791","DOIUrl":null,"url":null,"abstract":"Quantum Dashes (QDashes), some elongated and self-assembled semiconductor nanostructures are interesting candidates as building blocks for new laser devices with promising performances. To date, there was a lack of knowledge about the dimensionality of the confinement for carriers in such QDashes. We report on cross-sectional scanning tunneling microscopy and spectroscopy (X-STM/STS) performed on InAs(P)/InGaAsP/InP(001) QDashes, embedded in an optimized laser structure configuration. The active region consists of nine InAs(P) QDashes layers separated by InGaAsP barriers, sandwiched between a p-type and an n-type InP semiconductor. The STS measurements measured throughout the active region reveal a shift of the conduction band edges in agreement with built-in potential of the p-i-n junction. Furthermore we investigate the question of the dimensionality of the InAs(P) Q-Dashes. Local density of states measured on QDashes from layer to layer indicates a 1-D quantum-wire-like nature for these nanostructures whose squared wavefunctions were subsequently imaged by differential conductivity mapping.","PeriodicalId":357009,"journal":{"name":"2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIPRM.2016.7528791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum Dashes (QDashes), some elongated and self-assembled semiconductor nanostructures are interesting candidates as building blocks for new laser devices with promising performances. To date, there was a lack of knowledge about the dimensionality of the confinement for carriers in such QDashes. We report on cross-sectional scanning tunneling microscopy and spectroscopy (X-STM/STS) performed on InAs(P)/InGaAsP/InP(001) QDashes, embedded in an optimized laser structure configuration. The active region consists of nine InAs(P) QDashes layers separated by InGaAsP barriers, sandwiched between a p-type and an n-type InP semiconductor. The STS measurements measured throughout the active region reveal a shift of the conduction band edges in agreement with built-in potential of the p-i-n junction. Furthermore we investigate the question of the dimensionality of the InAs(P) Q-Dashes. Local density of states measured on QDashes from layer to layer indicates a 1-D quantum-wire-like nature for these nanostructures whose squared wavefunctions were subsequently imaged by differential conductivity mapping.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扫描隧道光谱探测InAs/InP量子线的一维电子态密度
量子破线线(q破线线)是一种细长的自组装半导体纳米结构,是新型激光器件的有趣候选材料,具有良好的性能。迄今为止,对于这种qdash中载流子的约束维度缺乏了解。我们报告了在嵌入优化的激光结构配置中的InAs(P)/InGaAsP/InP(001) qdash上进行的横断面扫描隧道显微镜和光谱(X-STM/STS)。有源区由九个InAs(P) qdash层组成,由InGaAsP势垒分隔,夹在P型和n型InP半导体之间。整个有源区域的STS测量结果显示,传导带边缘的移位与p-i-n结的内置电位一致。进一步研究了InAs(P) q -破折号的维数问题。在qdash上从一层到另一层测量的局部态密度表明,这些纳米结构具有一维量子线的性质,其平方波函数随后通过微分电导率映射成像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Structural and thermoelectric properties of TTF-I0.71 organic compound Growth and characterization of (Zn, Sn, Ga)As2 thin films grown on GaAs(001) substrate by molecular beam epitaxy Electronic properties of MoS2 nanoribbon with strain using tight binding method AlGaN/GaN high electron mobility transistors on Si with sputtered TiN Gate Experimental demonstration of strain detection using resonant tunneling delta-sigma modulation sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1