S. Baudot, S. Guissi, A. Milenin, J. Ervin, T. Schram
{"title":"N7 FinFET Self-Aligned Quadruple Patterning Modeling","authors":"S. Baudot, S. Guissi, A. Milenin, J. Ervin, T. Schram","doi":"10.1109/SISPAD.2018.8551646","DOIUrl":null,"url":null,"abstract":"In this paper, we model fin pitch walk based on a process flow simulation using the Coventor SEMulator3D virtual platform. A taper angle of the fin core is introduced into the model to provide good agreement with silicon data. The impact on various Self-Aligned Quadruple Patterning process steps is assessed. Etch sensitivity to pattern density is reproduced in the model and provides insight on the effect of fin height variability.","PeriodicalId":170070,"journal":{"name":"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"188 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2018.8551646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
In this paper, we model fin pitch walk based on a process flow simulation using the Coventor SEMulator3D virtual platform. A taper angle of the fin core is introduced into the model to provide good agreement with silicon data. The impact on various Self-Aligned Quadruple Patterning process steps is assessed. Etch sensitivity to pattern density is reproduced in the model and provides insight on the effect of fin height variability.