{"title":"Spintronics for instant-on nonvolatile electronics","authors":"K. Wang, P. Amiri","doi":"10.1109/COMMAD.2012.6472388","DOIUrl":null,"url":null,"abstract":"Using collective spins or nanomagnets offers the possibility of constructing high speed nonvolatile electronics, resulting in the energy dissipation at the device level possibly approaching the fundamental equilibrium Maxwell-Shannon-Landaur limit. This paper will describe the progress in energy-efficient MgO-based magnetic tunnel junction (MTJ) bits for high-speed spin-transfer-torque magnetoresistive random access memory (STT-MRAM). Furthermore, the possibility of a Magnetoelectric RAM (MeRAM) as a promising candidate for ultralow power is discussed. Demonstrated principles and experiments of voltage-induced switching of the magnetization and reorientation of the magnetic easy axis by electric field offer much reduced switching energy at high speed. The latter may enable a new paradigm of high speed nonvolatile electronics.","PeriodicalId":136573,"journal":{"name":"COMMAD 2012","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"COMMAD 2012","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMMAD.2012.6472388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Using collective spins or nanomagnets offers the possibility of constructing high speed nonvolatile electronics, resulting in the energy dissipation at the device level possibly approaching the fundamental equilibrium Maxwell-Shannon-Landaur limit. This paper will describe the progress in energy-efficient MgO-based magnetic tunnel junction (MTJ) bits for high-speed spin-transfer-torque magnetoresistive random access memory (STT-MRAM). Furthermore, the possibility of a Magnetoelectric RAM (MeRAM) as a promising candidate for ultralow power is discussed. Demonstrated principles and experiments of voltage-induced switching of the magnetization and reorientation of the magnetic easy axis by electric field offer much reduced switching energy at high speed. The latter may enable a new paradigm of high speed nonvolatile electronics.