Contextualized Embeddings for Connective Disambiguation in Shallow Discourse Parsing

René Knaebel, Manfred Stede
{"title":"Contextualized Embeddings for Connective Disambiguation in Shallow Discourse Parsing","authors":"René Knaebel, Manfred Stede","doi":"10.18653/v1/2020.codi-1.7","DOIUrl":null,"url":null,"abstract":"This paper studies a novel model that simplifies the disambiguation of connectives for explicit discourse relations. We use a neural approach that integrates contextualized word embeddings and predicts whether a connective candidate is part of a discourse relation or not. We study the influence of those context-specific embeddings. Further, we show the benefit of training the tasks of connective disambiguation and sense classification together at the same time. The success of our approach is supported by state-of-the-art results.","PeriodicalId":332037,"journal":{"name":"Proceedings of the First Workshop on Computational Approaches to Discourse","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First Workshop on Computational Approaches to Discourse","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.codi-1.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper studies a novel model that simplifies the disambiguation of connectives for explicit discourse relations. We use a neural approach that integrates contextualized word embeddings and predicts whether a connective candidate is part of a discourse relation or not. We study the influence of those context-specific embeddings. Further, we show the benefit of training the tasks of connective disambiguation and sense classification together at the same time. The success of our approach is supported by state-of-the-art results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
浅语篇分析中关联消歧的语境化嵌入
本文研究了一种简化显式语篇关系中连接词消歧的新模型。我们使用了一种神经方法,该方法集成了上下文化的词嵌入,并预测连接候选者是否属于话语关系的一部分。我们研究这些情境特定嵌入的影响。此外,我们还展示了同时训练连接消歧义和语义分类任务的好处。我们方法的成功得到了最先进的结果的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Do sentence embeddings capture discourse properties of sentences from Scientific Abstracts ? Contextualized Embeddings for Connective Disambiguation in Shallow Discourse Parsing Joint Modeling of Arguments for Event Understanding Coreference for Discourse Parsing: A Neural Approach Computational Interpretation of Recency for the Choice of Referring Expressions in Discourse
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1