H. Uchiyama, Y. Hasegawa, H. Morita, A. Kurokouchi, K. Wada, T. Komine
{"title":"Thermoelectric property of Cu2O thin film deposited by Reactive Ion Plating method","authors":"H. Uchiyama, Y. Hasegawa, H. Morita, A. Kurokouchi, K. Wada, T. Komine","doi":"10.1109/ICT.2006.331276","DOIUrl":null,"url":null,"abstract":"Cuprous oxide Cu-O thin film was deposited by Reactive Ion Plating (RIP) method, and the thermoelectric properties of Cu-O thin films were studied with varying oxygen content. Copper was evaporated by electron gun, and thin film of Cu-O was deposited with reaction in oxygen plasma. Adjusting of oxygen gas flow rate could control oxygen content of the deposited thin film. Seebeck coefficient and resistivity of the Cu2 O were 0.7 mV/K and 83.5 Omegacm at room temperature, respectively. Since the resistivity was still high for the thermoelectric material, we attempted to fabricate the Cu2O thin film using copper, oxygen gas and nitrogen gas as a dopant. As a result, the Seebeck and resistivity could achieve 0.3mV/K and 2 Omegacm, which is the lowest resistivity reported without hydrogen treatment","PeriodicalId":346555,"journal":{"name":"2006 25th International Conference on Thermoelectrics","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 25th International Conference on Thermoelectrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.2006.331276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Cuprous oxide Cu-O thin film was deposited by Reactive Ion Plating (RIP) method, and the thermoelectric properties of Cu-O thin films were studied with varying oxygen content. Copper was evaporated by electron gun, and thin film of Cu-O was deposited with reaction in oxygen plasma. Adjusting of oxygen gas flow rate could control oxygen content of the deposited thin film. Seebeck coefficient and resistivity of the Cu2 O were 0.7 mV/K and 83.5 Omegacm at room temperature, respectively. Since the resistivity was still high for the thermoelectric material, we attempted to fabricate the Cu2O thin film using copper, oxygen gas and nitrogen gas as a dopant. As a result, the Seebeck and resistivity could achieve 0.3mV/K and 2 Omegacm, which is the lowest resistivity reported without hydrogen treatment