Building Near-Real-Time MODIS Data Fusion Workflow to Support Agricultural Decision-making Applications

Li Lin, L. Di, Chen Zhang, Liying Guo, Junmei Tang, E. Yu, M. S. Rahman, Haoteng Zhao, Zhiqi Yu, Ziheng Sun, Juozas Gaigalas
{"title":"Building Near-Real-Time MODIS Data Fusion Workflow to Support Agricultural Decision-making Applications","authors":"Li Lin, L. Di, Chen Zhang, Liying Guo, Junmei Tang, E. Yu, M. S. Rahman, Haoteng Zhao, Zhiqi Yu, Ziheng Sun, Juozas Gaigalas","doi":"10.1109/Agro-Geoinformatics.2019.8820229","DOIUrl":null,"url":null,"abstract":"WaterSmart project is an NSF funded projected seeks water consumption reduction using satellite observations. In order to fit the fine temporal resolution requirement, satellites are required to have a high revisit cycle. MODIS is an ideal platform for monitoring the ground thanks to its daily coverage while the spatial resolution is too coarse. Research has demonstrated the possibility to improve the spatial resolution of MODIS using the Landsat 8 images. This research is aimed to establish a workflow to adapt the data fusion algorithm to achieve automatically processing at real-time in order to support short-term decision making.","PeriodicalId":143731,"journal":{"name":"2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Agro-Geoinformatics.2019.8820229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

WaterSmart project is an NSF funded projected seeks water consumption reduction using satellite observations. In order to fit the fine temporal resolution requirement, satellites are required to have a high revisit cycle. MODIS is an ideal platform for monitoring the ground thanks to its daily coverage while the spatial resolution is too coarse. Research has demonstrated the possibility to improve the spatial resolution of MODIS using the Landsat 8 images. This research is aimed to establish a workflow to adapt the data fusion algorithm to achieve automatically processing at real-time in order to support short-term decision making.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
构建近实时MODIS数据融合工作流支持农业决策应用
WaterSmart项目是美国国家科学基金会资助的一个项目,旨在利用卫星观测减少用水量。为了满足精细的时间分辨率要求,卫星需要具有较高的重访周期。在空间分辨率过于粗糙的情况下,MODIS的日常覆盖是一个理想的地面监测平台。研究已经证明了利用Landsat 8图像提高MODIS空间分辨率的可能性。本研究旨在建立一种适应数据融合算法的工作流,实现实时的自动处理,以支持短期决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Archiving System of Rural Land Contractual Management Right Data using Multithreading and Distributed Storage Technology Winter Wheat Drought Monitoring with Multi-temporal MODIS data and AquaCrop Model—A Case Study in Henan Province Rice yield estimation at pixel scale using relative vegetation indices from unmanned aerial systems Research on Cotton Information Extraction Based on Sentinel-2 Time Series Analysis Impacts of El Nino Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO) on the Olive Yield in the Mediterranean Region, Turkey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1