Characterizing the Visual Social Media Environment of Eating Disorders

Samsara N. Counts, J. Manning, Robert Pless
{"title":"Characterizing the Visual Social Media Environment of Eating Disorders","authors":"Samsara N. Counts, J. Manning, Robert Pless","doi":"10.1109/AIPR.2018.8707400","DOIUrl":null,"url":null,"abstract":"Eating disorders are often exacerbated by exposure to triggering images on social media. Standard approaches to filtering of social media by detecting hashtags or keywords are difficult to keep accurate because those migrate or change over time. In this work we present proof-of-concept demonstrations to show that Deep Learning classification algorithms are effective at classifying images related to eating disorders. We discuss some of the challenges in this domain and show that careful curation of the training data improves performance substantially.","PeriodicalId":230582,"journal":{"name":"2018 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2018.8707400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Eating disorders are often exacerbated by exposure to triggering images on social media. Standard approaches to filtering of social media by detecting hashtags or keywords are difficult to keep accurate because those migrate or change over time. In this work we present proof-of-concept demonstrations to show that Deep Learning classification algorithms are effective at classifying images related to eating disorders. We discuss some of the challenges in this domain and show that careful curation of the training data improves performance substantially.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
表征饮食失调的视觉社交媒体环境
社交媒体上的刺激性图片往往会加剧饮食失调。通过检测主题标签或关键字来过滤社交媒体的标准方法很难保持准确,因为它们会随着时间的推移而迁移或变化。在这项工作中,我们提出了概念验证演示,表明深度学习分类算法在分类与饮食失调相关的图像方面是有效的。我们讨论了该领域的一些挑战,并表明仔细管理训练数据可以大大提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated Annotation of Satellite Imagery using Model-based Projections Visualizing Compression of Deep Learning Models for Classification Malware Classification using Deep Convolutional Neural Networks An Improved Star Detection Algorithm Using a Combination of Statistical and Morphological Image Processing Techniques Improving Nuclei Classification Performance in H&E Stained Tissue Images Using Fully Convolutional Regression Network and Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1