Franco Tasso Parraga, Ciro Rodríguez, Yuri Pomachagua, Diego Rodriguez
{"title":"A Review of Image-Based Deep Learning Algorithms for Cervical Cancer Screening","authors":"Franco Tasso Parraga, Ciro Rodríguez, Yuri Pomachagua, Diego Rodriguez","doi":"10.1109/CICN51697.2021.9574680","DOIUrl":null,"url":null,"abstract":"The significant advance in artificial intelligence has posed many challenges, with disease detection being one of the most important. Early detection can be very important in preventing progressive disease progression and can help provide accurate treatment options. Cervical cancer is the fourth type of cancer most common in women. In 2018, 570 000 cases were estimated in women around the world. This article aims to present a review of different image-based algorithms for cervical cancer screening. For the research process, three important sources of information were considered: Scopus, Web of Science, and PubMed, considering a total of 12 articles taking into account the last five years. The articles were analyzed considering the databases used, the preprocessing of the images, the segmentation of the images, the classification of images, and the proposals' results. The results show great advances in the techniques used for cervical cancer screening, with convolutional neural networks being the most widely used technique. In addition, including the segmentation stage in the construction of the models can significantly increase precision. Finally, it is shown that the k-fold cross validation technique is one of the most used and efficient techniques to validate the models.","PeriodicalId":224313,"journal":{"name":"2021 13th International Conference on Computational Intelligence and Communication Networks (CICN)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th International Conference on Computational Intelligence and Communication Networks (CICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICN51697.2021.9574680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The significant advance in artificial intelligence has posed many challenges, with disease detection being one of the most important. Early detection can be very important in preventing progressive disease progression and can help provide accurate treatment options. Cervical cancer is the fourth type of cancer most common in women. In 2018, 570 000 cases were estimated in women around the world. This article aims to present a review of different image-based algorithms for cervical cancer screening. For the research process, three important sources of information were considered: Scopus, Web of Science, and PubMed, considering a total of 12 articles taking into account the last five years. The articles were analyzed considering the databases used, the preprocessing of the images, the segmentation of the images, the classification of images, and the proposals' results. The results show great advances in the techniques used for cervical cancer screening, with convolutional neural networks being the most widely used technique. In addition, including the segmentation stage in the construction of the models can significantly increase precision. Finally, it is shown that the k-fold cross validation technique is one of the most used and efficient techniques to validate the models.
人工智能的重大进步带来了许多挑战,疾病检测是最重要的挑战之一。早期发现对于预防疾病进展非常重要,并有助于提供准确的治疗方案。子宫颈癌是女性中最常见的第四种癌症。2018年,世界各地估计有57万例女性病例。本文旨在介绍不同的基于图像的子宫颈癌筛查算法的综述。在研究过程中,考虑了三个重要的信息来源:Scopus, Web of Science和PubMed,总共考虑了过去五年的12篇文章。从数据库的使用、图像的预处理、图像的分割、图像的分类以及建议的结果等方面对文章进行分析。结果显示,用于宫颈癌筛查的技术取得了巨大进步,卷积神经网络是最广泛使用的技术。此外,在模型构建中加入分割阶段可以显著提高精度。最后,证明了k-fold交叉验证技术是验证模型最常用和最有效的技术之一。