Modeling self-heating effects in AlGaN/GaN electronic devices during static and dynamic operation mode

A. Tallarico, P. Magnone, E. Sangiorgi, C. Fiegna
{"title":"Modeling self-heating effects in AlGaN/GaN electronic devices during static and dynamic operation mode","authors":"A. Tallarico, P. Magnone, E. Sangiorgi, C. Fiegna","doi":"10.1109/SISPAD.2014.6931606","DOIUrl":null,"url":null,"abstract":"In this paper, we present a study of the self-heating effects in GaN-based power devices during static and dynamic operation mode by means of Sentaurus TCAD. A physical model interface (PMI), accounting for the temperature dependence of the thermal boundary resistance (TBR), has been implemented in the simulator in order to realistically model self-heating effects. In particular, we take into account for the TBR associated to the nucleation layer between GaN and SiC substrate. Moreover, the thermal contribution of the mutual heating among adjacent devices has been considered. Finally, we have investigated the influence of the temperature on the surface charges trapping and de-trapping phenomena showing two different traps occupancy transients. While one of the two occurs also in the isothermal condition, the second one is temperature activated.","PeriodicalId":101858,"journal":{"name":"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2014.6931606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a study of the self-heating effects in GaN-based power devices during static and dynamic operation mode by means of Sentaurus TCAD. A physical model interface (PMI), accounting for the temperature dependence of the thermal boundary resistance (TBR), has been implemented in the simulator in order to realistically model self-heating effects. In particular, we take into account for the TBR associated to the nucleation layer between GaN and SiC substrate. Moreover, the thermal contribution of the mutual heating among adjacent devices has been considered. Finally, we have investigated the influence of the temperature on the surface charges trapping and de-trapping phenomena showing two different traps occupancy transients. While one of the two occurs also in the isothermal condition, the second one is temperature activated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
静态和动态工作模式下AlGaN/GaN电子器件的自热效应建模
本文利用Sentaurus TCAD研究了氮化镓功率器件在静态和动态工作模式下的自热效应。为了真实地模拟自热效应,在仿真器中实现了考虑热边界阻温度依赖性的物理模型界面(PMI)。特别地,我们考虑到与GaN和SiC衬底之间的成核层相关的TBR。此外,还考虑了相邻器件之间相互加热的热贡献。最后,我们研究了温度对表面电荷捕获和释放现象的影响,显示了两种不同的陷阱占用瞬态。其中一种反应也发生在等温条件下,而另一种反应是温度激活的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Physics of electronic transport in low-dimensionality materials for future FETs Effects of carbon-related oxide defects on the reliability of 4H-SiC MOSFETs Challenge of adopting TCAD in the development of power semiconductor devices for automotive applications Diameter dependence of scattering limited transport properties of Si nanowire MOSFETs under uniaxial tensile strain Novel biosensing devices for medical applications Soft contact-lens sensors for monitoring tear sugar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1