Fault-tolerant refresh power reduction of DRAMs for quasi-nonvolatile data retention

Y. Katayama, E. Stuckey, S. Morioka, Z. Wu
{"title":"Fault-tolerant refresh power reduction of DRAMs for quasi-nonvolatile data retention","authors":"Y. Katayama, E. Stuckey, S. Morioka, Z. Wu","doi":"10.1109/DFTVS.1999.802898","DOIUrl":null,"url":null,"abstract":"A quasi-nonvolatile memory system based on commercially available low-power dynamic random access memory (DRAM) technology is proposed and demonstrated. By applying a powerful one-shot Reed-Solomon error correction code (ECC) to the data stored in the DRAM, the refresh rate and memory system power usage can be greatly reduced while still maintaining data integrity. An adaptive refresh rate controller was developed in order to ensure robustness against the variations in data retention time due to perturbation effects such as DRAM part-to-part variations, environmental changes and data pattern sensitivity, while at the same time minimizing power usage. By checking for data failures among a small subset of data bits which are dynamically selected at the beginning of each use of the system, the state of the perturbation effects are predicted and used to adjust the refresh rate. As a result, a system was developed that provides reliability equivalent to standard DRAM systems while greatly (10-100X) reducing the refresh power. Experimental results of a test system are presented.","PeriodicalId":448322,"journal":{"name":"Proceedings 1999 IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (EFT'99)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1999 IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (EFT'99)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DFTVS.1999.802898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

A quasi-nonvolatile memory system based on commercially available low-power dynamic random access memory (DRAM) technology is proposed and demonstrated. By applying a powerful one-shot Reed-Solomon error correction code (ECC) to the data stored in the DRAM, the refresh rate and memory system power usage can be greatly reduced while still maintaining data integrity. An adaptive refresh rate controller was developed in order to ensure robustness against the variations in data retention time due to perturbation effects such as DRAM part-to-part variations, environmental changes and data pattern sensitivity, while at the same time minimizing power usage. By checking for data failures among a small subset of data bits which are dynamically selected at the beginning of each use of the system, the state of the perturbation effects are predicted and used to adjust the refresh rate. As a result, a system was developed that provides reliability equivalent to standard DRAM systems while greatly (10-100X) reducing the refresh power. Experimental results of a test system are presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
准非易失性数据保留的dram容错刷新功率降低
提出并演示了一种基于市售低功耗动态随机存取存储器(DRAM)技术的准非易失性存储系统。通过对存储在DRAM中的数据应用强大的一次性Reed-Solomon纠错码(ECC),可以在保持数据完整性的同时大大降低刷新率和内存系统功耗。开发了一种自适应刷新率控制器,以确保对扰动效应(如DRAM部件间变化、环境变化和数据模式敏感性)引起的数据保留时间变化的鲁棒性,同时最大限度地减少功耗。通过检查在系统每次使用开始时动态选择的一小部分数据位中的数据故障,预测扰动效应的状态并用于调整刷新率。因此,开发了一种系统,它提供了与标准DRAM系统相当的可靠性,同时大大降低了刷新功率(10-100倍)。给出了测试系统的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transient and permanent fault diagnosis for FPGA-based TMR systems Fast signature simulation for PPSFP simulators Limitations to estimating yield based on in-line defect measurements RAMSES: a fast memory fault simulator Implementing a self-checking neural system for photon event identification by SRAM-based FPGAs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1