Digital Twin Based Evolutionary Building Facility Control Optimization

Kohei Fukuhara, Ryo Kumagai, Fukawa Yuta, S. Tanabe, Hiroki Kawano, Yoshihiro Ohta, Hiroyuki Sato
{"title":"Digital Twin Based Evolutionary Building Facility Control Optimization","authors":"Kohei Fukuhara, Ryo Kumagai, Fukawa Yuta, S. Tanabe, Hiroki Kawano, Yoshihiro Ohta, Hiroyuki Sato","doi":"10.1109/CEC55065.2022.9870207","DOIUrl":null,"url":null,"abstract":"This work addresses a real-world building facility control problem by using evolutionary algorithms. The variables are facility control parameters, such as the start/stop time of air-conditioning, lighting, and ventilation operation, etc. The problem has six objectives: annual energy consumption, elec-tricity cost, overall satisfaction, thermal satisfaction, indoor air quality satisfaction, and lighting satisfaction. The problem has five constraints: power consumption, temperature, humidity, $\\mathbf{CO}_{2}$ concentration, and average illuminance. To solve the problem, we utilize IBEA framework. For efficient solution generation, we employ the steady-state model for IBEA. We propose the total constraint win-loss rank for multiple constraints to treat multiple constraints equally. Experimental results on artificial test problems and building facility control problems show that the proposed constraint IBEA with steady-state and total con-straint win-loss rank archives better search performance than conventional representative algorithms.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This work addresses a real-world building facility control problem by using evolutionary algorithms. The variables are facility control parameters, such as the start/stop time of air-conditioning, lighting, and ventilation operation, etc. The problem has six objectives: annual energy consumption, elec-tricity cost, overall satisfaction, thermal satisfaction, indoor air quality satisfaction, and lighting satisfaction. The problem has five constraints: power consumption, temperature, humidity, $\mathbf{CO}_{2}$ concentration, and average illuminance. To solve the problem, we utilize IBEA framework. For efficient solution generation, we employ the steady-state model for IBEA. We propose the total constraint win-loss rank for multiple constraints to treat multiple constraints equally. Experimental results on artificial test problems and building facility control problems show that the proposed constraint IBEA with steady-state and total con-straint win-loss rank archives better search performance than conventional representative algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于数字孪生的建筑设施演化控制优化
这项工作通过使用进化算法解决了一个现实世界的建筑设施控制问题。变量为设施控制参数,如空调开/停时间、照明、通风运行等。问题有六个目标:年能耗、电费、整体满意度、热满意度、室内空气质量满意度和照明满意度。该问题有五个约束条件:功耗、温度、湿度、$\mathbf{CO}_{2}$浓度和平均照度。为了解决这个问题,我们采用了IBEA框架。为了有效地生成解,我们采用了IBEA的稳态模型。为了平等地对待多个约束,我们提出了多个约束的总约束盈亏秩。在人工测试问题和建筑设施控制问题上的实验结果表明,本文提出的具有稳态和全约束输赢等级档案的约束IBEA比传统的代表性算法具有更好的搜索性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impacts of Single-objective Landscapes on Multi-objective Optimization Cooperative Multi-objective Topology Optimization Using Clustering and Metamodeling Global and Local Area Coverage Path Planner for a Reconfigurable Robot A New Integer Linear Program and A Grouping Genetic Algorithm with Controlled Gene Transmission for Joint Order Batching and Picking Routing Problem Test Case Prioritization and Reduction Using Hybrid Quantum-behaved Particle Swarm Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1