Direct ink writing of tunnelling graphite based soft piezoresistive pressure sensors

M. S. Baghini, R. Dahiya
{"title":"Direct ink writing of tunnelling graphite based soft piezoresistive pressure sensors","authors":"M. S. Baghini, R. Dahiya","doi":"10.1109/fleps53764.2022.9781527","DOIUrl":null,"url":null,"abstract":"Tunneling based piezoresistive sensors are often utilized for dynamic pressure sensing due to their low cost, ease of fabrication, ability to be printed and integrated with read-out modules. These devices can be subsequently integrated with transistors, actuators and other components towards the development of multifunctional electronic skin (e-Skin), where it is important that sensors exhibit uniform and replicable behavior. This can also help to minimize the need for compensation circuits during long-term use. In this study, direct ink writing of custommade low viscosity graphite ink is used to develop soft piezoresistive pressure sensors. The uniformity of the devices is gauged via the base conductivity and piezoresistive response, both of which exhibit a very good coefficient of variation of 2.21% and 7.1%, respectively. Furthermore, the sensors are sensitive to a wide range of forces from 0-7 N (~3.2 MPa maximum pressure). These devices pave the way towards efficient integration of pressure sensors for object grasping and manipulation due to their small size and bendability.","PeriodicalId":221424,"journal":{"name":"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","volume":"51 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/fleps53764.2022.9781527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tunneling based piezoresistive sensors are often utilized for dynamic pressure sensing due to their low cost, ease of fabrication, ability to be printed and integrated with read-out modules. These devices can be subsequently integrated with transistors, actuators and other components towards the development of multifunctional electronic skin (e-Skin), where it is important that sensors exhibit uniform and replicable behavior. This can also help to minimize the need for compensation circuits during long-term use. In this study, direct ink writing of custommade low viscosity graphite ink is used to develop soft piezoresistive pressure sensors. The uniformity of the devices is gauged via the base conductivity and piezoresistive response, both of which exhibit a very good coefficient of variation of 2.21% and 7.1%, respectively. Furthermore, the sensors are sensitive to a wide range of forces from 0-7 N (~3.2 MPa maximum pressure). These devices pave the way towards efficient integration of pressure sensors for object grasping and manipulation due to their small size and bendability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
隧道石墨基软压阻式压力传感器的直接墨水书写
基于隧道的压阻式传感器通常用于动态压力传感,因为它们成本低,易于制造,能够打印并与读出模块集成。这些设备随后可以与晶体管、执行器和其他组件集成,以开发多功能电子皮肤(e-Skin),其中传感器表现出统一和可复制的行为是很重要的。这也有助于在长期使用期间最大限度地减少对补偿电路的需求。在本研究中,使用定制的低粘度石墨墨水直接墨水书写来开发软压阻压力传感器。器件的均匀性通过基极电导率和压阻响应来衡量,两者的变化系数分别为2.21%和7.1%。此外,传感器对0-7 N(最大压力~3.2 MPa)的大范围力敏感。这些设备由于其小尺寸和可弯曲性,为有效集成用于物体抓取和操作的压力传感器铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conducting Polymer based Field-Effect Transistor for Volatile Organic Compound Sensing Demonstration of near-field capacitive standard communication bus for ultrathin reconfigurable sensor nodes 3D Printed Embedded Strain Sensor with Enhanced Performance Flexible and stretchable conductive fabric for temperature detection Facile Fabrication of Graphene Oxide-based Flexible Temperature Sensor and Improving its Humidity Stability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1