{"title":"Face synthesis from near-infrared to visual light via sparse representation","authors":"Zeda Zhang, Yunhong Wang, Zhaoxiang Zhang","doi":"10.1109/IJCB.2011.6117534","DOIUrl":null,"url":null,"abstract":"This paper presents a novel method for synthesizing artificial visual light (VIS) face images from near-infrared (NIR) inputs. Active NIR imaging is now widely employed because it is unobtrusive, invariant of environmental illuminations, and can penetrate glasses and sweats. Unfortunately, NIR imaging exhibits discrepant photic properties compared with VIS imaging. Based on recent results of research on compressive sensing, natural images can be compressed and recovered with an overcomplete dictionary by sparse representation coefficients. In our approach a pairwise dictionary is trained from randomly sampled coupled face patches, which contains sparse coded base functions to reconstruct representation coefficients via l1-minimization. We will demonstrate that this method is robust to moderate pose and expression variations, and is efficient in computing. Comparative experiments are conducted with state-of-the-art algorithms.","PeriodicalId":103913,"journal":{"name":"2011 International Joint Conference on Biometrics (IJCB)","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB.2011.6117534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
This paper presents a novel method for synthesizing artificial visual light (VIS) face images from near-infrared (NIR) inputs. Active NIR imaging is now widely employed because it is unobtrusive, invariant of environmental illuminations, and can penetrate glasses and sweats. Unfortunately, NIR imaging exhibits discrepant photic properties compared with VIS imaging. Based on recent results of research on compressive sensing, natural images can be compressed and recovered with an overcomplete dictionary by sparse representation coefficients. In our approach a pairwise dictionary is trained from randomly sampled coupled face patches, which contains sparse coded base functions to reconstruct representation coefficients via l1-minimization. We will demonstrate that this method is robust to moderate pose and expression variations, and is efficient in computing. Comparative experiments are conducted with state-of-the-art algorithms.