Robust material classification with a tactile skin using deep learning

S. S. Baishya, B. Bäuml
{"title":"Robust material classification with a tactile skin using deep learning","authors":"S. S. Baishya, B. Bäuml","doi":"10.1109/IROS.2016.7758088","DOIUrl":null,"url":null,"abstract":"Attaching a flexible tactile skin to an existing robotic system is relatively easy compared to integrating most other tactile sensor designs. In this paper we show that material classification purely based on the spatio-temporal signal of a flexible tactile skin can be robustly performed in a real world setting. We compare different classification algorithms and feature sets, including features adopted and extended from previous works in tactile material classification and that are based on the signal's Fourier spectrum. Our convolutional deep learning network architecture, which we also present here, is directly fed with the raw 24000 dimensional sensor signal and performs best by a large margin, reaching a classification accuracy of up to 97.3%.","PeriodicalId":296337,"journal":{"name":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"243 23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"90","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2016.7758088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 90

Abstract

Attaching a flexible tactile skin to an existing robotic system is relatively easy compared to integrating most other tactile sensor designs. In this paper we show that material classification purely based on the spatio-temporal signal of a flexible tactile skin can be robustly performed in a real world setting. We compare different classification algorithms and feature sets, including features adopted and extended from previous works in tactile material classification and that are based on the signal's Fourier spectrum. Our convolutional deep learning network architecture, which we also present here, is directly fed with the raw 24000 dimensional sensor signal and performs best by a large margin, reaching a classification accuracy of up to 97.3%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用深度学习的触觉皮肤的鲁棒材料分类
与集成大多数其他触觉传感器设计相比,将柔性触觉皮肤附加到现有机器人系统上相对容易。在本文中,我们证明了纯粹基于柔性触觉皮肤的时空信号的材料分类可以在现实世界中稳健地执行。我们比较了不同的分类算法和特征集,包括在触觉材料分类中采用和扩展的基于信号傅立叶谱的特征。我们的卷积深度学习网络架构,我们也在这里展示,直接输入原始的24000维传感器信号,并在很大程度上表现最好,达到高达97.3%的分类准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A passivity-based admittance control design using feedback interconnections Performance comparison of Wave Variable Transformation and Time Domain Passivity Approaches for time-delayed teleoperation: Preliminary results Iterative path optimisation for personalised dressing assistance using vision and force information Hand-eye calibration for robotic assisted minimally invasive surgery without a calibration object Modelling and dynamic analysis of underactuated capsule systems with friction-induced hysteresis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1