A Parameter Estimation Method of Frequency Hopping Signal Based On Sparse Time-frequency Method

Yongzhi Wang, Yun Lin, Xiuwei Chi
{"title":"A Parameter Estimation Method of Frequency Hopping Signal Based On Sparse Time-frequency Method","authors":"Yongzhi Wang, Yun Lin, Xiuwei Chi","doi":"10.1109/ICDSP.2018.8631661","DOIUrl":null,"url":null,"abstract":"Frequency hopping communication is a common communication method in the field of modern wireless communication countermeasures. Due to the progress of the signal processing in frequency hopping signals, the demand for the estimation of its parameters is also increasing. This paper research on the estimating parameter of frequency hopping signal based on the sparse liner regression of compressed sensing. In addition to the basic sparse analysis, we propose an improved method which combining the algorithm of approximating LO norm and morphological filtering. The simulation of parameter estimation shows that it has a great reduction in estimation error in low SNR to use two improved methods at the same time. And it can reduce about 0.3 in estimation error at-6dB. Also, the estimation error which using the improved method with approximating LO norm and morphological filtering can reach less than 0.003 at-6dB. The experimental results show that the method of processing frequency hopping signals used in this paper can effectively estimate its parameters.","PeriodicalId":218806,"journal":{"name":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","volume":"83 23","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2018.8631661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Frequency hopping communication is a common communication method in the field of modern wireless communication countermeasures. Due to the progress of the signal processing in frequency hopping signals, the demand for the estimation of its parameters is also increasing. This paper research on the estimating parameter of frequency hopping signal based on the sparse liner regression of compressed sensing. In addition to the basic sparse analysis, we propose an improved method which combining the algorithm of approximating LO norm and morphological filtering. The simulation of parameter estimation shows that it has a great reduction in estimation error in low SNR to use two improved methods at the same time. And it can reduce about 0.3 in estimation error at-6dB. Also, the estimation error which using the improved method with approximating LO norm and morphological filtering can reach less than 0.003 at-6dB. The experimental results show that the method of processing frequency hopping signals used in this paper can effectively estimate its parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于稀疏时频法的跳频信号参数估计方法
跳频通信是现代无线通信对抗领域常用的一种通信方式。随着跳频信号处理技术的发展,对跳频信号参数估计的要求也越来越高。本文研究了基于压缩感知稀疏线性回归的跳频信号参数估计问题。在基本稀疏分析的基础上,提出了一种将LO范数逼近算法与形态学滤波算法相结合的改进方法。参数估计的仿真结果表明,在低信噪比条件下,同时使用两种改进方法可以大大降低估计误差。在6db时的估计误差可降低0.3左右。在6db处,采用近似本征范数和形态滤波的改进方法估计误差小于0.003。实验结果表明,本文所采用的跳频信号处理方法可以有效地估计其参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A High-Throughput QC-LDPC Decoder for Near-Earth Application Face Recognition Based on Stacked Convolutional Autoencoder and Sparse Representation Internet of Remote Things: A Communication Scheme for Air-to-Ground Information Dissemination Deep Learning for Automatic IC Image Analysis A 4-D Sparse FIR Hyperfan Filter for Volumetric Refocusing of Light Fields by Hard Thresholding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1