Inflation Rate Modelling Through a Hybrid Model of Seasonal Autoregressive Moving Average and Multilayer Perceptron Neural Network

M. I. Rapoo, M. Chanza, Gomolemo Motlhwe
{"title":"Inflation Rate Modelling Through a Hybrid Model of Seasonal Autoregressive Moving Average and Multilayer Perceptron Neural Network","authors":"M. I. Rapoo, M. Chanza, Gomolemo Motlhwe","doi":"10.4018/978-1-7998-8455-2.ch012","DOIUrl":null,"url":null,"abstract":"This study examines the performance of seasonal autoregressive integrated moving average (SARIMA), multilayer perceptron neural networks (MLPNN), and hybrid SARIMA-MLPNN model(s) in modelling and forecasting inflation rate using the monthly consumer price index (CPI) data from 2010 to 2019 obtained from the South African Reserve Bank (SARB). The forecast errors in inflation rate forecasting are analyzed and compared. The study employed root mean squared error (RMSE) and mean absolute error (MAE) as performance measures. The results indicate that significant improvements in forecasting accuracy are obtained with the hybrid model (SARIMA-MLPNN) compared to the SARIMA and MLPNN. The MLPNN model outperformed the SARIMA model. However, the hybrid SARIMA-MLPNN model outperformed both the SARIMA and MLPNN in terms of forecasting accuracy/accuracy performance.","PeriodicalId":250689,"journal":{"name":"Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning","volume":"45 S212","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-7998-8455-2.ch012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines the performance of seasonal autoregressive integrated moving average (SARIMA), multilayer perceptron neural networks (MLPNN), and hybrid SARIMA-MLPNN model(s) in modelling and forecasting inflation rate using the monthly consumer price index (CPI) data from 2010 to 2019 obtained from the South African Reserve Bank (SARB). The forecast errors in inflation rate forecasting are analyzed and compared. The study employed root mean squared error (RMSE) and mean absolute error (MAE) as performance measures. The results indicate that significant improvements in forecasting accuracy are obtained with the hybrid model (SARIMA-MLPNN) compared to the SARIMA and MLPNN. The MLPNN model outperformed the SARIMA model. However, the hybrid SARIMA-MLPNN model outperformed both the SARIMA and MLPNN in terms of forecasting accuracy/accuracy performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于季节自回归移动平均和多层感知器神经网络混合模型的通货膨胀率建模
本研究利用南非储备银行(SARB) 2010年至2019年的月度消费者价格指数(CPI)数据,研究了季节性自回归综合移动平均(SARIMA)、多层感知器神经网络(MLPNN)和SARIMA-MLPNN混合模型在建模和预测通货膨胀率方面的表现。对通货膨胀率预测中的预测误差进行了分析和比较。研究采用均方根误差(RMSE)和平均绝对误差(MAE)作为绩效指标。结果表明,与SARIMA和MLPNN相比,SARIMA-MLPNN混合模型的预测精度有显著提高。MLPNN模型优于SARIMA模型。然而,混合SARIMA-MLPNN模型在预测精度/准确度性能方面优于SARIMA和MLPNN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Airbnb (Air Bed and Breakfast) Listing Analysis Through Machine Learning Techniques Value Analysis and Prediction Through Machine Learning Techniques for Popular Basketball Brands Protein-Protein Interactions (PPI) via Deep Neural Network (DNN) US Medical Expense Analysis Through Frequency and Severity Bootstrapping and Regression Model Inflation Rate Modelling Through a Hybrid Model of Seasonal Autoregressive Moving Average and Multilayer Perceptron Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1