Robust Contrast Enhancement via Graph-Based Cartoon-Texture Decomposition

Deming Zhai, Xianming Lu, Xiangyang Ji, Yuanchao Bai, Debin Zhao, Wen Gao
{"title":"Robust Contrast Enhancement via Graph-Based Cartoon-Texture Decomposition","authors":"Deming Zhai, Xianming Lu, Xiangyang Ji, Yuanchao Bai, Debin Zhao, Wen Gao","doi":"10.1109/ICME.2018.8486436","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a robust contrast enhancement algorithm based on cartoon and texture layer decomposition. Specifically, the cartoon layer is expected to be generally smoothing but with sharp edges at the foreground and background boundaries, for which we propose a quadratic form of graph total variation (GTV) as the prior to promote signal smoothness along graph structure. For the texture layer, a reweighted GTV is tailored to remove noises while preserving true image details. Finally, an optimization objective function is formulated, which casts image decomposition, contrast enhancement and noise reduction into a unified framework. We propose an efficient algorithm to solve it. Experimental results show that our generated images outperform state-of-the-art schemes noticeably in subjective quality evaluation.","PeriodicalId":426613,"journal":{"name":"2018 IEEE International Conference on Multimedia and Expo (ICME)","volume":"175 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2018.8486436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we propose a robust contrast enhancement algorithm based on cartoon and texture layer decomposition. Specifically, the cartoon layer is expected to be generally smoothing but with sharp edges at the foreground and background boundaries, for which we propose a quadratic form of graph total variation (GTV) as the prior to promote signal smoothness along graph structure. For the texture layer, a reweighted GTV is tailored to remove noises while preserving true image details. Finally, an optimization objective function is formulated, which casts image decomposition, contrast enhancement and noise reduction into a unified framework. We propose an efficient algorithm to solve it. Experimental results show that our generated images outperform state-of-the-art schemes noticeably in subjective quality evaluation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于图形的卡通纹理分解鲁棒对比度增强
本文提出了一种基于卡通和纹理层分解的鲁棒对比度增强算法。具体来说,卡通层通常是平滑的,但在前景和背景边界处有尖锐的边缘,为此我们提出了二次形式的图总变分(GTV)作为先验,以提高信号沿图结构的平滑性。对于纹理层,重新加权的GTV是量身定制的,以去除噪声,同时保留真实的图像细节。最后,建立了优化目标函数,将图像分解、对比度增强和降噪整合到一个统一的框架中。我们提出了一种有效的求解算法。实验结果表明,我们生成的图像在主观质量评价方面明显优于目前最先进的方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spherical Structural Similarity Index for Objective Omnidirectional Video Quality Assessment Abandoned Object Detection Using Pixel-Based Finite State Machine and Single Shot Multibox Detector A Dual Prediction Network for Image Captioning Single Image Layer Separation via Deep Admm Unrolling Video Stereo Matching with Temporally Consistent Belief Propagation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1