Accelerated Weighted ℓ1-Minimization for MRI Reconstruction Under Tight Frames in Complex Domain

P. Pokala, C. Seelamantula
{"title":"Accelerated Weighted ℓ1-Minimization for MRI Reconstruction Under Tight Frames in Complex Domain","authors":"P. Pokala, C. Seelamantula","doi":"10.1109/SPCOM50965.2020.9179611","DOIUrl":null,"url":null,"abstract":"We propose an improvement of the projected fast iterative soft-thresholding algorithm (pFISTA) and smoothing FISTA (SFISTA) to achieve faster convergence and improved reconstruction accuracy. The pFISTA addresses the problem of compressed sensing magnetic resonance imaging (CS-MRI) reconstruction under tight frames and considers standard $\\ell_{1}$ norm minimization. The $\\ell_{1} -$norm weighs each component in a sparse vector equally. However, this is restrictive. We employ the weighted $\\ell_{1} -$regularizer, defined over a complex-domain as the sparsity-promoting function in CS-MRI reconstruction. The weighted $\\ell_{1} -$regularizer assigns different weights to the components in a sparse vector to improve upon reconstruction accuracy. The optimization objective in CS-MRI is a real-valued function defined over a complex-domain and is therefore not holomorphic. We derive an algorithm, namely, projected weighted iterative soft-thresholding algorithm (pWISTA) based on Wirtinger calculus to solve the weighted $\\ell_{1} -$regularized CS-MRI reconstruction under tight frames. We show that the proximal operator for the weighted $\\ell_{1}$ regularizer over a complex-domain is the soft-thresholding operator, but with a different threshold for each component. We also incorporate Nesterov’s momentum into the pWISTA update to obtain the projected weighted fast iterative soft-thresholding algorithm (pWFISTA), which result in accelerated optimization as shown by the experimental results.","PeriodicalId":208527,"journal":{"name":"2020 International Conference on Signal Processing and Communications (SPCOM)","volume":"148 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Signal Processing and Communications (SPCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPCOM50965.2020.9179611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We propose an improvement of the projected fast iterative soft-thresholding algorithm (pFISTA) and smoothing FISTA (SFISTA) to achieve faster convergence and improved reconstruction accuracy. The pFISTA addresses the problem of compressed sensing magnetic resonance imaging (CS-MRI) reconstruction under tight frames and considers standard $\ell_{1}$ norm minimization. The $\ell_{1} -$norm weighs each component in a sparse vector equally. However, this is restrictive. We employ the weighted $\ell_{1} -$regularizer, defined over a complex-domain as the sparsity-promoting function in CS-MRI reconstruction. The weighted $\ell_{1} -$regularizer assigns different weights to the components in a sparse vector to improve upon reconstruction accuracy. The optimization objective in CS-MRI is a real-valued function defined over a complex-domain and is therefore not holomorphic. We derive an algorithm, namely, projected weighted iterative soft-thresholding algorithm (pWISTA) based on Wirtinger calculus to solve the weighted $\ell_{1} -$regularized CS-MRI reconstruction under tight frames. We show that the proximal operator for the weighted $\ell_{1}$ regularizer over a complex-domain is the soft-thresholding operator, but with a different threshold for each component. We also incorporate Nesterov’s momentum into the pWISTA update to obtain the projected weighted fast iterative soft-thresholding algorithm (pWFISTA), which result in accelerated optimization as shown by the experimental results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
复杂域紧框架下MRI重构的加速加权最小化算法
本文提出了一种改进投影快速迭代软阈值算法(pFISTA)和平滑FISTA算法(SFISTA),以实现更快的收敛速度和更高的重建精度。pFISTA解决了紧框架下压缩感知磁共振成像(CS-MRI)重建问题,并考虑了标准$\ell_{1}$范数最小化。$\ell_{1} -$范数相等地对稀疏向量中的每个分量进行加权。然而,这是限制性的。我们使用加权$\ell_{1} -$正则化器,在复域上定义为CS-MRI重构中的稀疏性促进函数。加权$\ell_{1} -$正则化器为稀疏向量中的分量分配不同的权重,以提高重构精度。CS-MRI的优化目标是在复域上定义的实值函数,因此不是全纯的。提出了一种基于Wirtinger演算的投影加权迭代软阈值算法(pWISTA),用于求解紧框架下加权$\ell_{1} -$正则化CS-MRI重构。我们证明了复域上加权$\ell_{1}$正则化器的近端算子是软阈值算子,但每个分量具有不同的阈值。我们还将Nesterov动量引入到pWISTA更新中,得到了投影加权快速迭代软阈值算法(pWFISTA),实验结果表明该算法具有加速优化的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wavelet based Fine-to-Coarse Retinal Blood Vessel Extraction using U-net Model Classification of Social Signals Using Deep LSTM-based Recurrent Neural Networks Classifying Cultural Music using Melodic Features Clustering tendency assessment for datasets having inter-cluster density variations Component-specific temporal decomposition: application to enhanced speech coding and co-articulation analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1