A new learning approach to design fault tolerant ANNs: finally a zero HW-SW overhead

F. Vargas, D. Lettnin, D. Brum, D. Prestes
{"title":"A new learning approach to design fault tolerant ANNs: finally a zero HW-SW overhead","authors":"F. Vargas, D. Lettnin, D. Brum, D. Prestes","doi":"10.1109/ATS.2002.1181714","DOIUrl":null,"url":null,"abstract":"We present a new approach to design fault tolerant artificial neural networks (ANNs). Additionally, this approach allows estimating the final network reliability. This approach is based on the mutation analysis technique and is used during the training process of the ANN. The basic idea is to train the ANN in the presence of faults (single-fault model is assumed). To do so, a set of faults is injected into the code describing the ANN. This procedure yields mutation versions of the original ANN code, which in turn are used to train the network in an iterative process with the designer until the moment when the ANN is no longer sensible to the single faults injected. In other words, the network became tolerant to the considered set of faults. A practical example where an ANN is used to recognize an electrocardiogram (ECG) and to measure ECG parameters illustrates the proposed methodology.","PeriodicalId":199542,"journal":{"name":"Proceedings of the 11th Asian Test Symposium, 2002. (ATS '02).","volume":"416 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Asian Test Symposium, 2002. (ATS '02).","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATS.2002.1181714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present a new approach to design fault tolerant artificial neural networks (ANNs). Additionally, this approach allows estimating the final network reliability. This approach is based on the mutation analysis technique and is used during the training process of the ANN. The basic idea is to train the ANN in the presence of faults (single-fault model is assumed). To do so, a set of faults is injected into the code describing the ANN. This procedure yields mutation versions of the original ANN code, which in turn are used to train the network in an iterative process with the designer until the moment when the ANN is no longer sensible to the single faults injected. In other words, the network became tolerant to the considered set of faults. A practical example where an ANN is used to recognize an electrocardiogram (ECG) and to measure ECG parameters illustrates the proposed methodology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计容错人工神经网络的一种新的学习方法:最终实现零HW-SW开销
提出了一种设计容错人工神经网络的新方法。此外,这种方法允许估计最终的网络可靠性。该方法基于突变分析技术,应用于人工神经网络的训练过程中。基本思想是在存在故障的情况下训练人工神经网络(假设单故障模型)。为此,将一组错误注入到描述人工神经网络的代码中。这个过程产生原始人工神经网络代码的突变版本,这些突变版本反过来被用于与设计器在迭代过程中训练网络,直到人工神经网络不再对注入的单个故障敏感。换句话说,网络对所考虑的故障集具有容忍度。一个实际的例子,其中一个人工神经网络用于识别心电图(ECG)和测量心电图参数说明了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Time slot specification based approach to analog fault diagnosis using built-in current sensors and test point insertion Efficient circuit specific pseudoexhaustive testing with cellular automata A ROMless LFSR reseeding scheme for scan-based BIST A fault-tolerant architecture for symmetric block ciphers High precision result evaluation of VLSI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1