Crime detection using Latent Semantic Analysis and hierarchical structure

Canyu Wang, Xuebi Guo, Hao Han
{"title":"Crime detection using Latent Semantic Analysis and hierarchical structure","authors":"Canyu Wang, Xuebi Guo, Hao Han","doi":"10.1109/ICSESS.2012.6269474","DOIUrl":null,"url":null,"abstract":"We make efforts to help the investigator discover the hidden conspirators. In the criminal cases, the investigators or the police have to make full use of the messages or spoken documents data that they record in files. Thus, mining the latent information from messages is vital to them. In Information Retrieval area, Latent Semantic Analysis (LSA) is an important method for query matching which can discover the underlying semantic relation or similarity between words and topics. We introduce a network hierarchical structure to analyze the original message network, making the analysis conveniently as well as ensuring the connectivity of the inner network connection of all the conspirators. For this purpose, we use LSA to measure the similarities between topics and Crime Prototype Vector, and the similarities will be used as the weights of the paths in the network hierarchies and calculate the suspicious degrees.","PeriodicalId":205738,"journal":{"name":"2012 IEEE International Conference on Computer Science and Automation Engineering","volume":"70 17","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Computer Science and Automation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSESS.2012.6269474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We make efforts to help the investigator discover the hidden conspirators. In the criminal cases, the investigators or the police have to make full use of the messages or spoken documents data that they record in files. Thus, mining the latent information from messages is vital to them. In Information Retrieval area, Latent Semantic Analysis (LSA) is an important method for query matching which can discover the underlying semantic relation or similarity between words and topics. We introduce a network hierarchical structure to analyze the original message network, making the analysis conveniently as well as ensuring the connectivity of the inner network connection of all the conspirators. For this purpose, we use LSA to measure the similarities between topics and Crime Prototype Vector, and the similarities will be used as the weights of the paths in the network hierarchies and calculate the suspicious degrees.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于潜在语义分析和层次结构的犯罪侦查
我们努力帮助调查人员发现隐藏的阴谋家。在刑事案件中,侦查人员或警察必须充分利用他们在档案中记录的信息或口头文件数据。因此,从消息中挖掘潜在信息对他们来说至关重要。在信息检索领域,潜在语义分析(LSA)是一种重要的查询匹配方法,它可以发现词与主题之间潜在的语义关系或相似度。我们引入网络层次结构对原始消息网络进行分析,既方便了分析,又保证了所有共谋者内部网络连接的连通性。为此,我们使用LSA来度量主题与犯罪原型向量之间的相似度,并将相似度用作网络层次中路径的权重,并计算可疑度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recognizing Textual Entailment with synthetic analysis based on SVM and feature value control Remote authentication of software based on machine's fingerprint Promoting sustainable e-government with multichannel service delivery: A case study Prediction and analysis of the household savings based on the multiplicative seasonality model Analysis and improvement for MDS localization algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1