Features of Excitation of a Linear Electromechanical Converter of Induction Type from An AC Source

V. Bolyukh, Y. V. Kashansky, I. S. Schukin
{"title":"Features of Excitation of a Linear Electromechanical Converter of Induction Type from An AC Source","authors":"V. Bolyukh, Y. V. Kashansky, I. S. Schukin","doi":"10.20998/2074-272X.2021.1.01","DOIUrl":null,"url":null,"abstract":"Purpose. The purpose of the article is to establish the basic laws of operation of induction-type linear electromechanical converter (LEMС) during operation in high-speed and shock-power modes and excitation from an AC source of increased frequency. Methodology. With the help of a mathematical model, the regularities of the course of processes in a LEMС, excited from an AC source, were established when working with shock-power and high-speed modes. The solutions of the equations of the mathematical model, which describe interrelated electrical, magnetic, mechanical and thermal processes, are presented in a recurrent form. Results. It was found that when the LEMC operates in the shock-power mode, the maximum value of the current in the inductor winding occurs in the first half-period, and in the inhibited armature winding in the second half-period. The electrodynamic force changes at twice the frequency, taking on both positive and negative values. Since the positive values exceed the negative ones, the magnitude of the impulse of the electrodynamic force increases with each period of the force. Depending on the initial voltage phase, the relative change in the magnitude of the force impulse is 1.5 %. It was found that when the LEMC operates in high-speed mode, the current in the inductor winding in the first half-period has the greatest value, but after several periods it takes on a steady state. The temperature rise of the inductor winding increases with the time of connection to the AC source, and the temperature rise of the armature winding has the nature of saturation. The electrodynamic force has an oscillatory character with strong damping and a significant predominance of the positive component. Depending on the initial phase of the voltage, the relative change in the maximum speed of the armature winding is 2.5 %. Originality. For the first time, a mathematical model of the LEMC, excited from an AC source, was developed, the solutions of the equations of which describe the interrelated electrical, magnetic, mechanical and thermal processes. For the first time, the regularities of the course of processes in LEMC were established when working with shock-power and high-speed modes. Practical value. The characteristics of LEMC are obtained, which determine the efficiency of work in shock-power and high-speed modes. It is shown that the initial voltage phase has no significant effect on the power, high-speed thermal performance of the converter excited from an alternating current source.<br><br>","PeriodicalId":332912,"journal":{"name":"EngRN: Power Engineering (Topic)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EngRN: Power Engineering (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20998/2074-272X.2021.1.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Purpose. The purpose of the article is to establish the basic laws of operation of induction-type linear electromechanical converter (LEMС) during operation in high-speed and shock-power modes and excitation from an AC source of increased frequency. Methodology. With the help of a mathematical model, the regularities of the course of processes in a LEMС, excited from an AC source, were established when working with shock-power and high-speed modes. The solutions of the equations of the mathematical model, which describe interrelated electrical, magnetic, mechanical and thermal processes, are presented in a recurrent form. Results. It was found that when the LEMC operates in the shock-power mode, the maximum value of the current in the inductor winding occurs in the first half-period, and in the inhibited armature winding in the second half-period. The electrodynamic force changes at twice the frequency, taking on both positive and negative values. Since the positive values exceed the negative ones, the magnitude of the impulse of the electrodynamic force increases with each period of the force. Depending on the initial voltage phase, the relative change in the magnitude of the force impulse is 1.5 %. It was found that when the LEMC operates in high-speed mode, the current in the inductor winding in the first half-period has the greatest value, but after several periods it takes on a steady state. The temperature rise of the inductor winding increases with the time of connection to the AC source, and the temperature rise of the armature winding has the nature of saturation. The electrodynamic force has an oscillatory character with strong damping and a significant predominance of the positive component. Depending on the initial phase of the voltage, the relative change in the maximum speed of the armature winding is 2.5 %. Originality. For the first time, a mathematical model of the LEMC, excited from an AC source, was developed, the solutions of the equations of which describe the interrelated electrical, magnetic, mechanical and thermal processes. For the first time, the regularities of the course of processes in LEMC were established when working with shock-power and high-speed modes. Practical value. The characteristics of LEMC are obtained, which determine the efficiency of work in shock-power and high-speed modes. It is shown that the initial voltage phase has no significant effect on the power, high-speed thermal performance of the converter excited from an alternating current source.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
交流源感应式线性机电变换器的励磁特性
目的。本文的目的是建立感应式线性机电变换器(LEMС)在高速、冲击功率模式和频率增加的交流励磁下运行的基本规律。方法。在数学模型的帮助下,建立了交流励磁LEMС在冲击功率和高速模式下的过程规律。描述相互关联的电、磁、机械和热过程的数学模型方程的解以循环形式呈现。结果。研究发现,当LEMC工作在冲击功率模式下时,电感绕组的电流最大值出现在前半周期,抑制电枢绕组的电流最大值出现在后半周期。电动力以两倍的频率变化,同时取正值和负值。由于正值大于负值,电动力脉冲的大小随着力的每一个周期而增加。根据初始电压相位的不同,力脉冲大小的相对变化为1.5%。研究发现,当LEMC工作在高速模式时,前半周期电感绕组中的电流值最大,但在几个周期后趋于稳定。电感绕组的温升随与交流电源连接时间的增加而增大,电枢绕组的温升具有饱和的性质。电动力具有强阻尼和显著的正分量优势的振荡特性。根据电压的初始相位,电枢绕组最大转速的相对变化为2.5%。创意。首次建立了由交流源激发的LEMC的数学模型,给出了描述相互关联的电、磁、机械和热过程的方程的解。首次建立了在冲击功率和高速模式下工作的LEMC过程的规律。实用价值。得到了LEMC的特性,这决定了其在冲击功率和高速模式下的工作效率。结果表明,初始电压相位对交流电源励磁变换器的功率、高速热性能无显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A calculation model for determination of impedance of power high voltage single-core cables with polymer insulation Normalization of Double-Circuit Overhead Line Magnetic Field inside Khrushchev Building Optimization and Reliability of the Power Supply Systems of a Compressor Station Features of Excitation of a Linear Electromechanical Converter of Induction Type from An AC Source Reproducing of the Humidity Curve of Power Transformers Oil Using Adaptive Neuro-Fuzzy Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1