An EMG readout front-end with automatic gain controller for human-computer interface

Hyeon-Cheon Seol, Young-Cheon Kwon, Seongkwan Hong, O. Kwon
{"title":"An EMG readout front-end with automatic gain controller for human-computer interface","authors":"Hyeon-Cheon Seol, Young-Cheon Kwon, Seongkwan Hong, O. Kwon","doi":"10.1109/BioCAS.2013.6679666","DOIUrl":null,"url":null,"abstract":"We propose an electromyogram (EMG) readout front-end with an automatic gain controller (AGC) for a human-computer interface (HCI). The proposed AGC adaptively controls voltage gain depending on the amplitude of the extracted EMG signal, which is varied according to the number of muscle fibers and the surface condition of the skin. Furthermore, the AGC alleviates the resolution requirement of an analog-digital converter (ADC) by fitting the maximum amplitude of the EMG signal to the full input range of the ADC. In order to obtain the wide-gain range, two variable gain amplifiers (VGAs) are used in the AGC. The voltage gain of the AGC is adjusted from 0 to 48.2 dB. A digital gain controller is employed to reduce the power consumption of the AGC. The calculated power efficiency of the AGC is 6.51 dB/μW. The proposed readout front-end is fabricated by using a 0.18 μm CMOS process technology and dissipates 19 μW at the supply voltage of 1.5 V.","PeriodicalId":344317,"journal":{"name":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":" 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioCAS.2013.6679666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose an electromyogram (EMG) readout front-end with an automatic gain controller (AGC) for a human-computer interface (HCI). The proposed AGC adaptively controls voltage gain depending on the amplitude of the extracted EMG signal, which is varied according to the number of muscle fibers and the surface condition of the skin. Furthermore, the AGC alleviates the resolution requirement of an analog-digital converter (ADC) by fitting the maximum amplitude of the EMG signal to the full input range of the ADC. In order to obtain the wide-gain range, two variable gain amplifiers (VGAs) are used in the AGC. The voltage gain of the AGC is adjusted from 0 to 48.2 dB. A digital gain controller is employed to reduce the power consumption of the AGC. The calculated power efficiency of the AGC is 6.51 dB/μW. The proposed readout front-end is fabricated by using a 0.18 μm CMOS process technology and dissipates 19 μW at the supply voltage of 1.5 V.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带自动增益控制器的肌电读出前端,用于人机界面
我们提出了一个肌电图(EMG)读出前端与自动增益控制器(AGC)的人机界面(HCI)。所提出的AGC根据提取的肌电信号的振幅自适应控制电压增益,肌电信号的振幅随肌纤维数量和皮肤表面状况的变化而变化。此外,AGC通过将肌电信号的最大幅度拟合到模数转换器(ADC)的整个输入范围,减轻了模数转换器(ADC)的分辨率要求。为了获得较宽的增益范围,在AGC中使用了两个可变增益放大器(VGAs)。AGC的电压增益从0到48.2 dB调节。采用数字增益控制器来降低AGC的功耗。计算出AGC的功率效率为6.51 dB/μW。该读出前端采用0.18 μm CMOS工艺,在1.5 V电源电压下功耗为19 μW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-electrode amperometric biosensor for neurotransmitters detection A portable hardware implementation for temporal laser speckle imaging Automatic detection of sleep spindles using Teager energy and spectral edge frequency A 430nW 64nV/vHz current-reuse telescopic amplifier for neural recording applications Output stage of a current-steering multipolar and multisite deep brain stimulator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1