Three-Level Processing of Multiple Aggregate Continuous Queries

Shenoda Guirguis, M. Sharaf, Panos K. Chrysanthis, Alexandros Labrinidis
{"title":"Three-Level Processing of Multiple Aggregate Continuous Queries","authors":"Shenoda Guirguis, M. Sharaf, Panos K. Chrysanthis, Alexandros Labrinidis","doi":"10.1109/ICDE.2012.112","DOIUrl":null,"url":null,"abstract":"Aggregate Continuous Queries (ACQs) are both a very popular class of Continuous Queries (CQs) and also have a potentially high execution cost. As such, optimizing the processing of ACQs is imperative for Data Stream Management Systems (DSMSs) to reach their full potential in supporting (critical) monitoring applications. For multiple ACQs that vary in window specifications and pre-aggregation filters, existing multiple ACQs optimization schemes assume a processing model where each ACQ is computed as a final-aggregation of a sub-aggregation. In this paper, we propose a novel processing model for ACQs, called Tri Ops, with the goal of minimizing the repetition of operator execution at the sub-aggregation level. We also propose Tri Weave, a Tri Ops-aware multi-query optimizer. We analytically and experimentally demonstrate the performance gains of our proposed schemes which shows their superiority over alternative schemes. Finally, we generalize Tri Weave to incorporate the classical subsumption-based multi-query optimization techniques.","PeriodicalId":321608,"journal":{"name":"2012 IEEE 28th International Conference on Data Engineering","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 28th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2012.112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

Aggregate Continuous Queries (ACQs) are both a very popular class of Continuous Queries (CQs) and also have a potentially high execution cost. As such, optimizing the processing of ACQs is imperative for Data Stream Management Systems (DSMSs) to reach their full potential in supporting (critical) monitoring applications. For multiple ACQs that vary in window specifications and pre-aggregation filters, existing multiple ACQs optimization schemes assume a processing model where each ACQ is computed as a final-aggregation of a sub-aggregation. In this paper, we propose a novel processing model for ACQs, called Tri Ops, with the goal of minimizing the repetition of operator execution at the sub-aggregation level. We also propose Tri Weave, a Tri Ops-aware multi-query optimizer. We analytically and experimentally demonstrate the performance gains of our proposed schemes which shows their superiority over alternative schemes. Finally, we generalize Tri Weave to incorporate the classical subsumption-based multi-query optimization techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多聚合连续查询的三层处理
聚合连续查询(acq)是一种非常流行的连续查询(cq),同时也具有潜在的高执行成本。因此,优化acq的处理对于数据流管理系统(dsm)在支持(关键)监控应用方面充分发挥其潜力至关重要。对于窗口规格和预聚合过滤器不同的多个ACQ,现有的多个ACQ优化方案假设一个处理模型,其中每个ACQ被计算为子聚合的最终聚合。在本文中,我们提出了一种新的acq处理模型,称为Tri Ops,其目标是在子聚合级别上最小化操作符的重复执行。我们还提出了Tri Weave,一个Tri ops感知的多查询优化器。我们通过分析和实验证明了我们提出的方案的性能增益,显示了它们比其他方案的优越性。最后,我们将Tri Weave推广到经典的基于包容的多查询优化技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Keyword Query Reformulation on Structured Data Accuracy-Aware Uncertain Stream Databases Extracting Analyzing and Visualizing Triangle K-Core Motifs within Networks Project Daytona: Data Analytics as a Cloud Service Automatic Extraction of Structured Web Data with Domain Knowledge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1