β-Ga2O3Dielectric Superjunction Schottky Barrier Diode Exceeding SiC Unipolar Figure of Merit: A Novel Approach to Realizing Superjunction Devices Without p-type Doping
Saurav Roy, A. Bhattacharyya, Carl Peterson, S. Krishnamoorthy
{"title":"β-Ga2O3Dielectric Superjunction Schottky Barrier Diode Exceeding SiC Unipolar Figure of Merit: A Novel Approach to Realizing Superjunction Devices Without p-type Doping","authors":"Saurav Roy, A. Bhattacharyya, Carl Peterson, S. Krishnamoorthy","doi":"10.1109/ICEE56203.2022.10118322","DOIUrl":null,"url":null,"abstract":"We demonstrate lateral β-Ga<inf>2</inf>O<inf>3</inf> Schottky barrier diode (SBD) with a high permittivity (high-k) dielectric superjunction (SJ) structure. Extreme permittivity dielectric (BaTiO<inf>3</inf>) with dielectric constant of 220 is used to uniformly distribute the electric field in a MOVPE-grown lateral drift layer, which circumvents the extreme difficulties in achieving charge balance using conventional p-n superjunction structures in β-Ga<inf>2</inf>O<inf>3</inf> due to the lack of shallow acceptors. SBD on an epilayer with a sheet charge of 1.5×10<sup>13</sup> cm<sup>2</sup>demonstrates a specific on resistance (Ron-sp) of 0.83 mΩ-cm<sup>-2</sup>and a breakdown voltage V<inf>BR</inf> of 1487 V for an anode to cathode length of 5 microns, rendering a Power figure of Merit (PFOM) of 2.7 GW/cm-<sup>2</sup> when normalized to the active current conducting area. These results using the proposed device structure demonstrates the promise of β-Ga<inf>2</inf>O<inf>3</inf>-based devices in multi-kilovolt class applications.","PeriodicalId":281727,"journal":{"name":"2022 IEEE International Conference on Emerging Electronics (ICEE)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Emerging Electronics (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEE56203.2022.10118322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We demonstrate lateral β-Ga2O3 Schottky barrier diode (SBD) with a high permittivity (high-k) dielectric superjunction (SJ) structure. Extreme permittivity dielectric (BaTiO3) with dielectric constant of 220 is used to uniformly distribute the electric field in a MOVPE-grown lateral drift layer, which circumvents the extreme difficulties in achieving charge balance using conventional p-n superjunction structures in β-Ga2O3 due to the lack of shallow acceptors. SBD on an epilayer with a sheet charge of 1.5×1013 cm2demonstrates a specific on resistance (Ron-sp) of 0.83 mΩ-cm-2and a breakdown voltage VBR of 1487 V for an anode to cathode length of 5 microns, rendering a Power figure of Merit (PFOM) of 2.7 GW/cm-2 when normalized to the active current conducting area. These results using the proposed device structure demonstrates the promise of β-Ga2O3-based devices in multi-kilovolt class applications.