Using A Cropping Technique or Not: Impacts on SVM-based AMD Detection on OCT Images

C. Ko, Po-Han Chen, Wei-Ming Liao, Cheng-Kai Lu, Cheng-Hung Lin, Jing-Wen Liang
{"title":"Using A Cropping Technique or Not: Impacts on SVM-based AMD Detection on OCT Images","authors":"C. Ko, Po-Han Chen, Wei-Ming Liao, Cheng-Kai Lu, Cheng-Hung Lin, Jing-Wen Liang","doi":"10.1109/AICAS.2019.8771609","DOIUrl":null,"url":null,"abstract":"This paper compares the system performance of distinct flows with automatic image cropping to without automatic image cropping for age-related macular degeneration (AMD) detection on optical coherence tomography (OCT) images. Using the image cropping, the computational time of noise removal and feature extraction can be significantly reduced by a small loss of detection accuracy. The simulation results show that using the image cropping at the first stage achieves 93.4% accuracy. Compared to the flow without image cropping, using the image cropping loses only 0.5% accuracy but saves about 12 hours computational time and about a half of memory storages.","PeriodicalId":273095,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"59 21","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS.2019.8771609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper compares the system performance of distinct flows with automatic image cropping to without automatic image cropping for age-related macular degeneration (AMD) detection on optical coherence tomography (OCT) images. Using the image cropping, the computational time of noise removal and feature extraction can be significantly reduced by a small loss of detection accuracy. The simulation results show that using the image cropping at the first stage achieves 93.4% accuracy. Compared to the flow without image cropping, using the image cropping loses only 0.5% accuracy but saves about 12 hours computational time and about a half of memory storages.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
是否使用裁剪技术:对基于svm的OCT图像AMD检测的影响
本文比较了在光学相干断层扫描(OCT)图像上进行年龄相关性黄斑变性(AMD)检测时,自动图像裁剪与不自动图像裁剪的不同流的系统性能。利用图像裁剪,在检测精度损失很小的情况下,可以显著减少去噪和特征提取的计算时间。仿真结果表明,在第一阶段使用图像裁剪,准确率达到93.4%。与不进行图像裁剪的流程相比,使用图像裁剪仅损失0.5%的精度,但节省了大约12小时的计算时间和大约一半的内存存储。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial Intelligence of Things Wearable System for Cardiac Disease Detection Fast event-driven incremental learning of hand symbols Accelerating CNN-RNN Based Machine Health Monitoring on FPGA Neuromorphic networks on the SpiNNaker platform Complexity Reduction on HEVC Intra Mode Decision with modified LeNet-5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1