{"title":"Signal Representation Using Ramanujan Subspaces Utilizing A Prior Signal Information","authors":"Shaik Basheeruddin Shah, Vijay Kumar Chakka","doi":"10.1109/SPCOM50965.2020.9179618","DOIUrl":null,"url":null,"abstract":"In signal processing applications the information about the signal such as frequency (or) period is known a prior for most of the practical signals like ECG, EEG, speech, etc. Inspired by this, in this paper, we propose a new signal representation to estimate the period and frequency information of a given signal with low computational complexity. We achieve this by representing a finite-length discrete-time signal as a linear combination of signals belongs to Ramanujan subspaces. Further, we evaluate the performance of the proposed representation with a simulated example and also by addressing the problem of reducing Power Line Interference (PLI) in an ECG signal. Finally, for a given integer-valued signal, we show that the computational complexity of the proposed transform is quite low in comparison with the existing transforms, and it is quite comparable for a given real (or) complex-valued signal.","PeriodicalId":208527,"journal":{"name":"2020 International Conference on Signal Processing and Communications (SPCOM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Signal Processing and Communications (SPCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPCOM50965.2020.9179618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In signal processing applications the information about the signal such as frequency (or) period is known a prior for most of the practical signals like ECG, EEG, speech, etc. Inspired by this, in this paper, we propose a new signal representation to estimate the period and frequency information of a given signal with low computational complexity. We achieve this by representing a finite-length discrete-time signal as a linear combination of signals belongs to Ramanujan subspaces. Further, we evaluate the performance of the proposed representation with a simulated example and also by addressing the problem of reducing Power Line Interference (PLI) in an ECG signal. Finally, for a given integer-valued signal, we show that the computational complexity of the proposed transform is quite low in comparison with the existing transforms, and it is quite comparable for a given real (or) complex-valued signal.