{"title":"Pemodelan Protein dengan Homology Modeling menggunakan SWISS-MODEL","authors":"Noer Komari, Samsul Hadi, Eko Suhartono","doi":"10.36873/jjms.2020.v2.i2.408","DOIUrl":null,"url":null,"abstract":"The three-dimensional (3D) structure of proteins is necessary to understand the properties and functions of proteins. Determining protein structure by laboratory equipment is quite complicated and expensive. An alternative method to predict the 3D structure of proteins in the in silico method. One of the in silico methods is homology modeling. Homology modeling is done using the SWISS-MODEL server. Proteins that will be modeled in the 3D structure are proteins that do not yet have a structure in the RCSB PDB database. Protein sequences were obtained from the UniProt database with code A0A0B6VWS2. The results showed that there were two models selected, namely model-1 with the PDB code template 1q0e and model-2 with the PDB code template 3gtv. The results of sequence alignment and model visualization show that model-1 and model-2 are identical. The evaluation and assessment of model-1 on the Ramachandran Plot have a Favored area of ??97.36%, a MolProbity score of 0.79, and a QMEAN value is 1.13. Model-1 is a good 3D protein structure model.","PeriodicalId":168223,"journal":{"name":"Jurnal Jejaring Matematika dan Sains","volume":"5 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Jejaring Matematika dan Sains","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36873/jjms.2020.v2.i2.408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
The three-dimensional (3D) structure of proteins is necessary to understand the properties and functions of proteins. Determining protein structure by laboratory equipment is quite complicated and expensive. An alternative method to predict the 3D structure of proteins in the in silico method. One of the in silico methods is homology modeling. Homology modeling is done using the SWISS-MODEL server. Proteins that will be modeled in the 3D structure are proteins that do not yet have a structure in the RCSB PDB database. Protein sequences were obtained from the UniProt database with code A0A0B6VWS2. The results showed that there were two models selected, namely model-1 with the PDB code template 1q0e and model-2 with the PDB code template 3gtv. The results of sequence alignment and model visualization show that model-1 and model-2 are identical. The evaluation and assessment of model-1 on the Ramachandran Plot have a Favored area of ??97.36%, a MolProbity score of 0.79, and a QMEAN value is 1.13. Model-1 is a good 3D protein structure model.