Pemodelan Protein dengan Homology Modeling menggunakan SWISS-MODEL

Noer Komari, Samsul Hadi, Eko Suhartono
{"title":"Pemodelan Protein dengan Homology Modeling menggunakan SWISS-MODEL","authors":"Noer Komari, Samsul Hadi, Eko Suhartono","doi":"10.36873/jjms.2020.v2.i2.408","DOIUrl":null,"url":null,"abstract":"The three-dimensional (3D) structure of proteins is necessary to understand the properties and functions of proteins. Determining protein structure by laboratory equipment is quite complicated and expensive. An alternative method to predict the 3D structure of proteins in the in silico method. One of the in silico methods is homology modeling. Homology modeling is done using the SWISS-MODEL server. Proteins that will be modeled in the 3D structure are proteins that do not yet have a structure in the RCSB PDB database. Protein sequences were obtained from the UniProt database with code A0A0B6VWS2. The results showed that there were two models selected, namely model-1 with the PDB code template 1q0e and model-2 with the PDB code template 3gtv. The results of sequence alignment and model visualization show that model-1 and model-2 are identical. The evaluation and assessment of model-1 on the Ramachandran Plot have a Favored area of ??97.36%, a MolProbity score of 0.79, and a QMEAN value is 1.13. Model-1 is a good 3D protein structure model.","PeriodicalId":168223,"journal":{"name":"Jurnal Jejaring Matematika dan Sains","volume":"5 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Jejaring Matematika dan Sains","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36873/jjms.2020.v2.i2.408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The three-dimensional (3D) structure of proteins is necessary to understand the properties and functions of proteins. Determining protein structure by laboratory equipment is quite complicated and expensive. An alternative method to predict the 3D structure of proteins in the in silico method. One of the in silico methods is homology modeling. Homology modeling is done using the SWISS-MODEL server. Proteins that will be modeled in the 3D structure are proteins that do not yet have a structure in the RCSB PDB database. Protein sequences were obtained from the UniProt database with code A0A0B6VWS2. The results showed that there were two models selected, namely model-1 with the PDB code template 1q0e and model-2 with the PDB code template 3gtv. The results of sequence alignment and model visualization show that model-1 and model-2 are identical. The evaluation and assessment of model-1 on the Ramachandran Plot have a Favored area of ??97.36%, a MolProbity score of 0.79, and a QMEAN value is 1.13. Model-1 is a good 3D protein structure model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pemodelan蛋白dengan同源性建模
蛋白质的三维结构是了解蛋白质性质和功能的必要条件。用实验室设备测定蛋白质结构是相当复杂和昂贵的。预测蛋白质三维结构的一种替代方法。其中一种计算机方法是同调建模。同源建模是使用SWISS-MODEL服务器完成的。将在3D结构中建模的蛋白质是在RCSB PDB数据库中尚未具有结构的蛋白质。蛋白质序列从UniProt数据库中获取,代码为A0A0B6VWS2。结果表明,共选择了两种模型,即PDB代码模板1q0e的模型1和PDB代码模板3gtv的模型2。序列比对和模型可视化结果表明,模型1和模型2是一致的。模型1对Ramachandran地块的评价和评价的有利面积为97.36%,MolProbity评分为0.79,QMEAN值为1.13。model -1是一个很好的三维蛋白质结构模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Perbandingan Plastik Dari Material-Material Bioplastik Karakterisasi Pasir Pantai Citra Kabupaten Sukamara Menggunakan XRF dan XRD Etnoekologi Masyarakat di Kawasan Hutan Jati Kabupaten Batang pada Pertanaman Tumpangsari Identifikasi Nematoda Tanah Pada Perkebunan Sawi (Brassica juncea L.) di Kelurahan Landasan Ulin Utara, Banjarbaru, Kalimantan Selatan Pemodelan Protein dengan Homology Modeling menggunakan SWISS-MODEL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1