{"title":"Attention Mechanism indicating Item Novelty for Sequential Recommendation","authors":"Li-Chia Wang, Hao-Shang Ma, Jen-Wei Huang","doi":"10.1109/ASONAM55673.2022.10068599","DOIUrl":null,"url":null,"abstract":"Most sequential recommendation systems, including those that employ a variety of features and state-of-the-art network models, tend to favor items that are the most popular or of greatest relevance to the historic behavior of the user. Recommendations made under these conditions tend to be repetitive; i.e., many options that might be of interest to users are entirely disregarded. This paper presents a novel algorithm that assigns a novelty score to potential recommendation items. We also present an architecture by which to incorporate this functionality in existing recommendation systems. In experiments, the proposed NASM system outperformed state-of-the-art sequential recommender systems, thereby verifying that the inclusion of novelty score can indeed improve recommendation performance.","PeriodicalId":423113,"journal":{"name":"2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASONAM55673.2022.10068599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Most sequential recommendation systems, including those that employ a variety of features and state-of-the-art network models, tend to favor items that are the most popular or of greatest relevance to the historic behavior of the user. Recommendations made under these conditions tend to be repetitive; i.e., many options that might be of interest to users are entirely disregarded. This paper presents a novel algorithm that assigns a novelty score to potential recommendation items. We also present an architecture by which to incorporate this functionality in existing recommendation systems. In experiments, the proposed NASM system outperformed state-of-the-art sequential recommender systems, thereby verifying that the inclusion of novelty score can indeed improve recommendation performance.
IF 3.1 3区 医学Acta OncologicaPub Date : 2022-04-01DOI: 10.1080/0284186X.2022.2027516
Anders Högmo, Erik Holmberg, Hedda Haugen Cange, Johan Reizenstein, Johan Wennerberg, Martin Beran, Karin Söderkvist, Eva Hammerlid, Helena Sjödin, Lovisa Farnebo, Karl Sandström, Lalle Hammarstedt-Nordenvall, Katarina Zborayova, Eva Brun